Suppr超能文献

糖甜菜液泡阴离子通透通道的特性:抑制剂的影响。

Characterization of an anion-permeable channel from sugar beet vacuoles: effect of inhibitors.

机构信息

Pflanzenphysiologisches Institut, Universität Göttingen, D-3400 Göttingen, FRG.

出版信息

EMBO J. 1988 Dec 1;7(12):3661-6. doi: 10.1002/j.1460-2075.1988.tb03247.x.

Abstract

The vacuole occupies 25-95% of the plant cell volume and plays an essential role in maintaining cytoplasmic homeostasis of nutrients and ions. Recent patch-clamp studies identified ion channels and electrogenic pumps as pathways for the movement of ions and metabolites across the vacuolar membrane (tonoplast). At high cytoplasmic Ca (>10 M) and negative potentials (inside the vacuole) non-selective channels of the ;slow-vacuolar (SV)-type' were activated resulting in anion release or cation influx. In the present study these vacuolar channels were characterized pharmacologically by ion channel inhibitors. The cation-transport inhibitors Ba, TEA and amiloride caused only partial and reversible block of the ;SV-type'channels, whereas anion-transport inhibitors strongly affected the vacuolar channels. Pyridoxalphosphate and the dimethylaminecarboxylate derivates anthracene-9-carboxylic acid and C 144 reversibly blocked the channels up to 70% and Zncl(2) up to 95%. DIDS and SITS inhibited this channel irreversibly up to 95%. The block developed under a variety of experimental conditions using solutions containing combinations of permanent cations and anions. The DIDS binding site is located on the cytoplasmic surface of the tonoplast, as intravacuolar DIDS did not block the channels. DIDS concentrations in the micromolar range, efficient in blocking 70-80% of the ;SV-type' channels did not significantly affect ATP-induced or pyrophosphate-induced proton-pumps. Stilbene derivatives may therefore be useful tools for studies on the substrate binding site on this vacuolar channel and for channel isolation.

摘要

液泡占据植物细胞体积的 25-95%,在维持细胞质中营养物质和离子的内环境稳定方面发挥着重要作用。最近的膜片钳研究鉴定出离子通道和生电泵是离子和代谢物穿过液泡膜(液泡被膜)的途径。在细胞质 Ca 浓度较高(>10 M)和负电势(液泡内)的情况下,“慢液泡(SV)型”的非选择性通道被激活,导致阴离子释放或阳离子内流。在本研究中,这些液泡通道通过离子通道抑制剂进行了药理学表征。阳离子转运抑制剂 Ba、TEA 和阿米洛利仅部分且可逆地阻断“SV 型”通道,而阴离子转运抑制剂则强烈影响液泡通道。吡哆醛磷酸盐和二甲胺羧酸酯衍生物蒽-9-羧酸和 C 144 可逆地阻断通道高达 70%,ZnCl 2 阻断高达 95%。DIDS 和 SITS 不可逆地抑制该通道,可达 95%。在使用含有永久阳离子和阴离子组合的溶液的各种实验条件下,通道的阻断作用得到了发展。DIDS 结合位点位于液泡被膜的细胞质表面,因为腔内 DIDS 不会阻断通道。有效阻断 70-80%“SV 型”通道的 DIDS 浓度在微摩尔范围内,不会显著影响 ATP 诱导或焦磷酸诱导的质子泵。因此,二苯乙烯衍生物可能是研究该液泡通道底物结合位点和通道分离的有用工具。

相似文献

1
Characterization of an anion-permeable channel from sugar beet vacuoles: effect of inhibitors.
EMBO J. 1988 Dec 1;7(12):3661-6. doi: 10.1002/j.1460-2075.1988.tb03247.x.
2
Cation-permeable vacuolar ion channels in the moss Physcomitrella patens: a patch-clamp study.
Planta. 2013 Aug;238(2):357-67. doi: 10.1007/s00425-013-1902-4. Epub 2013 May 29.
3
Vacuolar ion channels in the liverwort Marchantia polymorpha: influence of ion channel inhibitors.
Planta. 2017 May;245(5):1049-1060. doi: 10.1007/s00425-017-2661-4. Epub 2017 Feb 14.
5
Signal transduction and ion channels in guard cells.
Philos Trans R Soc Lond B Biol Sci. 1998 Sep 29;353(1374):1475-88. doi: 10.1098/rstb.1998.0303.
6
Characteristics of anion channels in the tonoplast of the liverwort Conocephalum conicum.
Plant Cell Physiol. 2007 Dec;48(12):1747-57. doi: 10.1093/pcp/pcm147. Epub 2007 Oct 29.
7
Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels.
Planta. 2004 Oct;219(6):1057-70. doi: 10.1007/s00425-004-1293-7. Epub 2004 May 28.
8
Vacuolar chloride regulation of an anion-selective tonoplast channel.
J Membr Biol. 1994 May;140(1):1-12. doi: 10.1007/BF00234481.
9
Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium.
Plant J. 1996 Dec;10(6):1055-69. doi: 10.1046/j.1365-313x.1996.10061055.x.
10
K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels.
Plant J. 2005 Feb;41(4):606-14. doi: 10.1111/j.1365-313X.2004.02324.x.

引用本文的文献

1
A charged existence: A century of transmembrane ion transport in plants.
Plant Physiol. 2024 Apr 30;195(1):79-110. doi: 10.1093/plphys/kiad630.
2
Patch-clamp technique to study mitochondrial membrane biophysics.
J Gen Physiol. 2023 Aug 7;155(8). doi: 10.1085/jgp.202313347. Epub 2023 Jun 22.
3
Surface pH changes suggest a role for H/OH channels in salinity response of Chara australis.
Protoplasma. 2018 May;255(3):851-862. doi: 10.1007/s00709-017-1191-z. Epub 2017 Dec 15.
4
Vacuolar ion channels in the liverwort Marchantia polymorpha: influence of ion channel inhibitors.
Planta. 2017 May;245(5):1049-1060. doi: 10.1007/s00425-017-2661-4. Epub 2017 Feb 14.
6
7
Current progress in tonoplast proteomics reveals insights into the function of the large central vacuole.
Front Plant Sci. 2013 Mar 1;4:34. doi: 10.3389/fpls.2013.00034. eCollection 2013.
8
Hydrostatic and osmotic pressure activated channel in plant vacuole.
Biophys J. 1991 Dec;60(6):1326-36. doi: 10.1016/S0006-3495(91)82170-1.
9
Response to cytosolic nickel of Slow Vacuolar channels in the hyperaccumulator plant Alyssum bertolonii.
Eur Biophys J. 2009 Apr;38(4):495-501. doi: 10.1007/s00249-008-0400-2. Epub 2009 Jan 23.

本文引用的文献

1
Inhibition of na/h antiport activity in sugar beet tonoplast by analogs of amiloride.
Plant Physiol. 1987 Sep;85(1):30-3. doi: 10.1104/pp.85.1.30.
5
Voltage dependence of K channels in guard-cell protoplasts.
Proc Natl Acad Sci U S A. 1987 Jun;84(12):4108-12. doi: 10.1073/pnas.84.12.4108.
6
Dimeric structure of single chloride channels from Torpedo electroplax.
Proc Natl Acad Sci U S A. 1984 May;81(9):2772-5. doi: 10.1073/pnas.81.9.2772.
9
Voltage-dependent K channels in protoplasts of trap-lobe cells of Dionaea muscipula.
J Membr Biol. 1987;100(1):73-81. doi: 10.1007/BF02209142.
10
Ion channels in yeast.
Science. 1986 Sep 12;233(4769):1195-7. doi: 10.1126/science.2426783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验