Suppr超能文献

液泡内腔阳离子对慢速液泡通道的稳态调控及原位通道介导的液泡膜Ca2+通量评估

Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ.

作者信息

Pérez V, Wherrett T, Shabala S, Muñiz J, Dobrovinskaya O, Pottosin I

机构信息

Centro Universitario de Investigaciones Biomédicas. Universidad de Colima, 28045 Colima, Col., México.

出版信息

J Exp Bot. 2008;59(14):3845-55. doi: 10.1093/jxb/ern225. Epub 2008 Oct 1.

Abstract

Ca(2+), Mg(2+), and K(+) activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca(2+), by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca(2+) activity was approximately 0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca(2+) in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca(2+)) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca(2+) within a physiological range of concentrations (0.1-1.0 mM). Aggregation of the physiological vacuolar Na(+) (60 mM) and Mg(2+) (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca(2+) variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca(2+) activates the SV channel in a voltage-independent manner with K(d)=0.7-1.5 microM. Comparison of the vacuolar Ca(2+) fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 microM) cytosolic Ca(2+), only 0.5% of SV channels are open. This mediates a Ca(2+) release of only a few pA per vacuole (approximately 0.1 pA per single SV channel). Overall, our data suggest that the release of Ca(2+) through SV channels makes little contribution to a global cytosolic Ca(2+) signal.

摘要

利用传统的离子选择性微电极评估了红甜菜(Beta vulgaris L.)液泡中的Ca(2+)、Mg(2+)和K(+)活性,对于Ca(2+),还通过非损伤性离子通量测量(MIFE)进行了评估。液泡中Ca(2+)的平均活性约为0.2 mM。通过膜片钳技术在切除的液泡膜片上研究了在不存在和存在其他生理浓度阳离子的情况下,Ca(2+)对慢液泡(SV)通道电压依赖性的调节。将液泡侧的pH从7.5降至5.5(液泡Ca(2+)浓度为零时)不会影响通道的电压依赖性,但在生理浓度范围(0.1 - 1.0 mM)内消除了对腔内Ca(2+)的敏感性。生理浓度的液泡Na(+)(60 mM)和Mg(2+)(8 mM)聚集也导致SV通道在从纳摩尔到0.1 mM的范围内对液泡Ca(2+)变化几乎不敏感。在液泡侧的生理阳离子浓度下,胞质Ca(2+)以电压非依赖性方式激活SV通道,解离常数K(d)=0.7 - 1.5 microM。通过MIFE技术测量的液泡Ca(2+)通量与通过估计附着膜片中SV通道活性得到的通量进行比较,结果表明,在静息膜电位下,即使胞质Ca(2+)浓度升高(20 microM),也只有0.5%的SV通道开放。这介导每个液泡仅释放几皮安的Ca(2+)(每个单个SV通道约为0.1 pA)。总体而言,我们的数据表明,通过SV通道释放的Ca(2+)对整体胞质Ca(2+)信号的贡献很小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30ca/2638953/8265188761da/jexbotern225f01_lw.jpg

相似文献

2
Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels.
Planta. 2004 Oct;219(6):1057-70. doi: 10.1007/s00425-004-1293-7. Epub 2004 May 28.
3
Cation-permeable vacuolar ion channels in the moss Physcomitrella patens: a patch-clamp study.
Planta. 2013 Aug;238(2):357-67. doi: 10.1007/s00425-013-1902-4. Epub 2013 May 29.
4
Regulation of the fast vacuolar channel by cytosolic and vacuolar potassium.
Biophys J. 2003 Feb;84(2 Pt 1):977-86. doi: 10.1016/S0006-3495(03)74914-5.
5
Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium.
Plant J. 1996 Dec;10(6):1055-69. doi: 10.1046/j.1365-313x.1996.10061055.x.
6
Regulation of the slow vacuolar channel by luminal potassium: role of surface charge.
J Membr Biol. 2005 May;205(2):103-11. doi: 10.1007/s00232-005-0766-3.
7
K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels.
Plant J. 2005 Feb;41(4):606-14. doi: 10.1111/j.1365-313X.2004.02324.x.
8
The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium.
Plant J. 2009 Jun;58(5):715-23. doi: 10.1111/j.1365-313X.2009.03820.x. Epub 2009 Mar 3.
9
Conduction of monovalent and divalent cations in the slow vacuolar channel.
J Membr Biol. 2001 May 1;181(1):55-65. doi: 10.1007/s0023200100073.
10
SV channels dominate the vacuolar Ca2+ release during intracellular signaling.
FEBS Lett. 2009 Mar 4;583(5):921-6. doi: 10.1016/j.febslet.2009.02.009. Epub 2009 Feb 10.

引用本文的文献

1
Potassium homeostasis and signalling: from the whole plant to the subcellular level.
Quant Plant Biol. 2025 May 8;6:e13. doi: 10.1017/qpb.2025.10. eCollection 2025.
4
TPC1-Type Channels in : Interaction between EF-Hands and Ca.
Plants (Basel). 2022 Dec 15;11(24):3527. doi: 10.3390/plants11243527.
5
Computational Analyses of the AtTPC1 (Arabidopsis Two-Pore Channel 1) Permeation Pathway.
Int J Mol Sci. 2021 Sep 26;22(19):10345. doi: 10.3390/ijms221910345.
6
Mechanisms of Plant Responses and Adaptation to Soil Salinity.
Innovation (Camb). 2020 Apr 24;1(1):100017. doi: 10.1016/j.xinn.2020.100017. eCollection 2020 May 21.
7
Voltage-dependent gating of SV channel TPC1 confers vacuole excitability.
Nat Commun. 2019 Jun 14;10(1):2659. doi: 10.1038/s41467-019-10599-x.
8
Calcium Signals from the Vacuole.
Plants (Basel). 2013 Oct 14;2(4):589-614. doi: 10.3390/plants2040589.
9
Towards the Physics of Calcium Signalling in Plants.
Plants (Basel). 2013 Sep 27;2(4):541-88. doi: 10.3390/plants2040541.

本文引用的文献

1
Effect of aluminium on membrane potential and ion fluxes at the apices of wheat roots.
Funct Plant Biol. 2005 May;32(3):199-208. doi: 10.1071/FP04210.
3
Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses.
Plant J. 2008 Jan;53(2):287-99. doi: 10.1111/j.1365-313X.2007.03342.x. Epub 2007 Nov 19.
4
Vacuolar calcium channels.
J Exp Bot. 2007;58(7):1559-69. doi: 10.1093/jxb/erm035. Epub 2007 Mar 12.
5
Imaging single-channel calcium microdomains.
Cell Calcium. 2006 Nov-Dec;40(5-6):413-22. doi: 10.1016/j.ceca.2006.08.006. Epub 2006 Oct 25.
6
Characterization of an anion-permeable channel from sugar beet vacuoles: effect of inhibitors.
EMBO J. 1988 Dec 1;7(12):3661-6. doi: 10.1002/j.1460-2075.1988.tb03247.x.
7
Microdomains of intracellular Ca2+: molecular determinants and functional consequences.
Physiol Rev. 2006 Jan;86(1):369-408. doi: 10.1152/physrev.00004.2005.
8
Regulation of the slow vacuolar channel by luminal potassium: role of surface charge.
J Membr Biol. 2005 May;205(2):103-11. doi: 10.1007/s00232-005-0766-3.
9
The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement.
Nature. 2005 Mar 17;434(7031):404-8. doi: 10.1038/nature03381.
10
K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels.
Plant J. 2005 Feb;41(4):606-14. doi: 10.1111/j.1365-313X.2004.02324.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验