Suppr超能文献

在混合皮质培养物中,顺应性与脑组织相当的基质会选择神经元而非胶质细胞生长。

Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures.

作者信息

Georges Penelope C, Miller William J, Meaney David F, Sawyer Evelyn S, Janmey Paul A

机构信息

Institute for Medicine and Engineering, Sea Run Holdings Inc., Freeport, Maine, USA.

出版信息

Biophys J. 2006 Apr 15;90(8):3012-8. doi: 10.1529/biophysj.105.073114. Epub 2006 Feb 3.

Abstract

Cortical neurons and astrocytes respond strongly to changes in matrix rigidity when cultured on flexible substrates. In this study, existing polyacrylamide gel polymerization methods were modified into a novel method for making substrates capable of engaging specific cell-adhesion receptors. Embryonic cortical dissociations were cultured on polyacrylamide or fibrin gel scaffolds of varying compliance. On soft gels, astrocytes do not spread and have disorganized F-actin compared to the cytoskeletons of astrocytes on hard surfaces. Neurons, however, extend long neurites and polymerize actin filaments on both soft and hard gels. Compared to tissue culture plastic or stiff gel substrates coated with laminin, on which astrocytes overgrow neurons in mixed cultures, laminin-coated soft gels encourage attachment and growth of neurons while suppressing astrocyte growth. The number of astrocytes on soft gels is lower than on hard even in the absence of mitotic inhibitors normally used to temper the astrocyte population. Dissociated embryonic rat cortices grown on flexible fibrin gels, a biomaterial with potential use as an implant material, display a similar mechano-dependent difference in cell population. The stiffness of materials required for optimal neuronal growth, characterized by an elastic modulus of several hundred Pa, is in the range measured for intact rat brain. Together, these data emphasize the potential importance of material substrate stiffness as a design feature in the next generation of biomaterials intended to promote neuronal regeneration across a lesion in the central nervous system while simultaneously minimizing the ingrowth of astrocytes into the lesion area.

摘要

当在柔性基质上培养时,皮质神经元和星形胶质细胞对基质硬度的变化有强烈反应。在本研究中,现有的聚丙烯酰胺凝胶聚合方法被改进为一种制造能够结合特定细胞粘附受体的基质的新方法。将胚胎皮质解离物培养在不同顺应性的聚丙烯酰胺或纤维蛋白凝胶支架上。在软凝胶上,与硬表面上的星形胶质细胞细胞骨架相比,星形胶质细胞不伸展且F-肌动蛋白排列紊乱。然而,神经元在软凝胶和硬凝胶上都能伸出长的神经突并聚合肌动蛋白丝。与涂有层粘连蛋白的组织培养塑料或硬凝胶基质相比,在混合培养中星形胶质细胞会覆盖神经元,而涂有层粘连蛋白的软凝胶则促进神经元的附着和生长,同时抑制星形胶质细胞的生长。即使在没有通常用于控制星形胶质细胞数量的有丝分裂抑制剂的情况下,软凝胶上的星形胶质细胞数量也比硬凝胶上的少。在柔性纤维蛋白凝胶上生长的解离胚胎大鼠皮质,一种有潜力用作植入材料的生物材料,在细胞群体中显示出类似的机械依赖性差异。以数百帕的弹性模量为特征的、实现最佳神经元生长所需的材料硬度,与完整大鼠脑的测量范围一致。总之,这些数据强调了材料基质硬度作为下一代生物材料设计特征的潜在重要性,这种生物材料旨在促进中枢神经系统损伤部位的神经元再生,同时最大限度地减少星形胶质细胞向损伤区域的长入。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验