Dauphas Nicolas, Rouxel Olivier
Origins Laboratory, Department of the Geophysical Sciences, Enrico Fermi Institute, and Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, USA.
Mass Spectrom Rev. 2006 Jul-Aug;25(4):515-50. doi: 10.1002/mas.20078.
Although the processes that govern iron isotope variations in nature are just beginning to be understood, multiple studies attest of the virtue of this system to solve important problems in geosciences and biology. In this article, we review recent advances in the geochemistry, cosmochemistry, and biochemistry of iron isotopes. In Section 2, we briefly address the question of the nucleosynthesis of Fe isotopes. In Section 3, we describe the different methods for purifying Fe and analyzing its isotopic composition. The methods of SIMS, RIMS, and TIMS are presented but more weight is given to measurements by MC-ICPMS. In Section 4, the isotope anomalies measured in extraterrestrial material are briefly discussed. In Section 5, we show how high temperature processes like evaporation, condensation, diffusion, reduction, and phase partitioning can affect Fe isotopic composition. In Section 6, the various low temperature processes causing Fe isotopic fractionation are presented. These involve aqueous and biologic systems.
尽管控制自然界中铁同位素变化的过程才刚刚开始被理解,但多项研究证明了该系统在解决地球科学和生物学重要问题方面的优势。在本文中,我们综述了铁同位素地球化学、宇宙化学和生物化学方面的最新进展。在第2节中,我们简要讨论了铁同位素的核合成问题。在第3节中,我们描述了纯化铁并分析其同位素组成的不同方法。介绍了二次离子质谱(SIMS)、共振离子质谱(RIMS)和热电离质谱(TIMS)方法,但更侧重于多接收电感耦合等离子体质谱(MC-ICPMS)测量。在第4节中,简要讨论了在地外物质中测量到的同位素异常。在第5节中,我们展示了诸如蒸发、冷凝、扩散、还原和相分配等高温过程如何影响铁同位素组成。在第6节中,介绍了导致铁同位素分馏的各种低温过程。这些过程涉及水相和生物系统。