Grüner Renate, Bjørnarå Bård T, Moen Gunnar, Taxt Torfinn
Department of Biomedicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway.
J Magn Reson Imaging. 2006 Mar;23(3):273-84. doi: 10.1002/jmri.20505.
To propose an automatic method for estimating voxel-specific arterial input functions (AIFs) in dynamic contrast brain perfusion imaging.
Voxel-specific AIFs were estimated blindly using the theory of homomorphic transformations and complex cepstrum analysis. Wiener filtering was used in the subsequent deconvolution. The method was verified using simulated data and evaluated in 10 healthy adults.
Computer simulations accurately estimated differently shaped, normalized AIFs. Simple Wiener filtering resulted in underestimation of flow values. Preliminary in vivo results showed comparable cerebral flow value ratios between gray matter (GM) and white matter (WM) when using blindly estimated voxel-specific AIFs or a single manually selected AIF. Significant differences (P < or = 0.0125) in mean transit time (MTT) and time-to-peak (TTP) in GM compared to WM was seen with the new method.
Initial results suggest that the proposed method can replace the tedious and difficult task of manually selecting an AIF, while simultaneously providing better differentiation between time-dependent hemodynamic parameters.
提出一种在动态对比脑灌注成像中估计体素特异性动脉输入函数(AIF)的自动方法。
利用同态变换理论和复倒谱分析盲目估计体素特异性AIF。在随后的去卷积中使用维纳滤波。该方法通过模拟数据进行验证,并在10名健康成年人中进行评估。
计算机模拟准确估计了不同形状的归一化AIF。简单的维纳滤波导致血流值估计偏低。初步的体内结果表明,当使用盲目估计的体素特异性AIF或单个手动选择的AIF时,灰质(GM)和白质(WM)之间的脑血流值比率具有可比性。使用新方法时,与WM相比,GM中的平均通过时间(MTT)和达峰时间(TTP)存在显著差异(P≤0.0125)。
初步结果表明,所提出的方法可以取代手动选择AIF这一繁琐且困难的任务,同时在时间依赖性血流动力学参数之间提供更好的区分。