Suppr超能文献

动态磁敏感对比磁共振成像结合局部动脉输入函数。

Dynamic susceptibility contrast MRI with localized arterial input functions.

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.

出版信息

Magn Reson Med. 2010 May;63(5):1305-14. doi: 10.1002/mrm.22338.

Abstract

Compared to gold-standard measurements of cerebral perfusion with positron emission tomography using H(2)[(15)O] tracers, measurements with dynamic susceptibility contrast MR are more accessible, less expensive, and less invasive. However, existing methods for analyzing and interpreting data from dynamic susceptibility contrast MR have characteristic disadvantages that include sensitivity to incorrectly modeled delay and dispersion in a single, global arterial input function. We describe a model of tissue microcirculation derived from tracer kinetics that estimates for each voxel a unique, localized arterial input function. Parameters of the model were estimated using Bayesian probability theory and Markov-chain Monte Carlo, circumventing difficulties arising from numerical deconvolution. Applying the new method to imaging studies from a cohort of 14 patients with chronic, atherosclerotic, occlusive disease showed strong correlations between perfusion measured by dynamic susceptibility contrast MR with localized arterial input function and perfusion measured by quantitative positron emission tomography with H(2)[(15)O]. Regression to positron emission tomography measurements enabled conversion of dynamic susceptibility contrast MR to a physiologic scale. Regression analysis for localized arterial input function gave estimates of a scaling factor for quantitation that described perfusion accurately in patients with substantial variability in hemodynamic impairment.

摘要

与使用 H(2)[(15)O]示踪剂的正电子发射断层扫描对脑灌注进行的金标准测量相比,动态磁敏感对比磁共振测量更容易获得、成本更低且侵入性更小。然而,用于分析和解释动态磁敏感对比磁共振数据的现有方法具有特征性的缺点,包括对单个全局动脉输入函数中的延迟和分散建模不正确的敏感性。我们描述了一种源自示踪剂动力学的组织微循环模型,该模型为每个体素估计了独特的局部动脉输入函数。使用贝叶斯概率论和马尔可夫链蒙特卡罗方法来估计模型的参数,避免了数字反卷积带来的困难。将新方法应用于 14 例患有慢性动脉粥样硬化闭塞性疾病的患者的成像研究中,显示出局部动脉输入函数的动态磁敏感对比磁共振测量与使用 H(2)[(15)O]的定量正电子发射断层扫描测量之间的强烈相关性。通过回归到正电子发射断层扫描测量值,可以将动态磁敏感对比磁共振转换为生理尺度。局部动脉输入函数的回归分析给出了定量的缩放因子估计值,该值可以准确描述在血流动力学障碍变化较大的患者中的灌注情况。

相似文献

1
Dynamic susceptibility contrast MRI with localized arterial input functions.
Magn Reson Med. 2010 May;63(5):1305-14. doi: 10.1002/mrm.22338.
2
Arterial input function measurements for bolus tracking perfusion imaging in the brain.
Magn Reson Med. 2013 Mar 1;69(3):771-80. doi: 10.1002/mrm.24319. Epub 2012 May 18.
3
Dynamic contrast-enhanced MR imaging of carotid atherosclerotic plaque: model selection, reproducibility, and validation.
Radiology. 2013 Jan;266(1):271-9. doi: 10.1148/radiol.12120499. Epub 2012 Nov 14.
4
Evaluation of signal formation in local arterial input function measurements of dynamic susceptibility contrast MRI.
Magn Reson Med. 2012 May;67(5):1324-31. doi: 10.1002/mrm.23120. Epub 2011 Aug 16.
5
Modeling and correction of bolus dispersion effects in dynamic susceptibility contrast MRI.
Magn Reson Med. 2014 Dec;72(6):1762-74. doi: 10.1002/mrm.25077. Epub 2014 Jan 22.
7
Single-channel blind estimation of arterial input function and tissue impulse response in DCE-MRI.
IEEE Trans Biomed Eng. 2012 Apr;59(4):1012-21. doi: 10.1109/TBME.2011.2182195. Epub 2011 Dec 30.
8
Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging.
Magn Reson Med. 2012 Aug;68(2):495-506. doi: 10.1002/mrm.23257. Epub 2011 Dec 12.

引用本文的文献

2
Accuracy and reliability of diffusion imaging models.
Neuroimage. 2022 Jul 1;254:119138. doi: 10.1016/j.neuroimage.2022.119138. Epub 2022 Mar 23.
3
Heterogeneity Diffusion Imaging of gliomas: Initial experience and validation.
PLoS One. 2019 Nov 14;14(11):e0225093. doi: 10.1371/journal.pone.0225093. eCollection 2019.
4
Dissociation Between Hormonal Counterregulatory Responses and Cerebral Glucose Metabolism During Hypoglycemia.
Diabetes. 2017 Dec;66(12):2964-2972. doi: 10.2337/db17-0574. Epub 2017 Oct 2.
5
Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF.
Mol Imaging Biol. 2018 Feb;20(1):150-159. doi: 10.1007/s11307-017-1090-x.
6
An extended vascular model for less biased estimation of permeability parameters in DCE-T1 images.
NMR Biomed. 2017 Jun;30(6). doi: 10.1002/nbm.3698. Epub 2017 Feb 17.

本文引用的文献

5
Iterative blind deconvolution in magnetic resonance brain perfusion imaging.
Magn Reson Med. 2006 Apr;55(4):805-15. doi: 10.1002/mrm.20850.
7
Magnetic resonance brain perfusion imaging with voxel-specific arterial input functions.
J Magn Reson Imaging. 2006 Mar;23(3):273-84. doi: 10.1002/jmri.20505.
8
Automatic selection of arterial input function using cluster analysis.
Magn Reson Med. 2006 Mar;55(3):524-31. doi: 10.1002/mrm.20759.
9
Technical aspects of perfusion-weighted imaging.
Neuroimaging Clin N Am. 2005 Aug;15(3):623-37, xi. doi: 10.1016/j.nic.2005.08.009.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验