Han Ju, Bhanu Bir
Center for Research in Intelligent Systems, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
IEEE Trans Pattern Anal Mach Intell. 2006 Feb;28(2):316-22. doi: 10.1109/TPAMI.2006.38.
In this paper, we propose a new spatio-temporal gait representation, called Gait Energy Image (GEI), to characterize human walking properties for individual recognition by gait. To address the problem of the lack of training templates, we also propose a novel approach for human recognition by combining statistical gait features from real and synthetic templates. We directly compute the real templates from training silhouette sequences, while we generate the synthetic templates from training sequences by simulating silhouette distortion. We use a statistical approach for learning effective features from real and synthetic templates. We compare the proposed GEI-based gait recognition approach with other gait recognition approaches on USF HumanID Database. Experimental results show that the proposed GEI is an effective and efficient gait representation for individual recognition, and the proposed approach achieves highly competitive performance with respect to the published gait recognition approaches.
在本文中,我们提出了一种新的时空步态表征,称为步态能量图像(GEI),用于通过步态进行个体识别来表征人类行走特性。为了解决缺乏训练模板的问题,我们还提出了一种通过结合来自真实和合成模板的统计步态特征进行人类识别的新方法。我们直接从训练轮廓序列计算真实模板,而通过模拟轮廓失真从训练序列生成合成模板。我们使用一种统计方法从真实和合成模板中学习有效特征。我们在USF HumanID数据库上将所提出的基于GEI的步态识别方法与其他步态识别方法进行比较。实验结果表明,所提出的GEI是一种用于个体识别的有效且高效的步态表征,并且所提出的方法相对于已发表的步态识别方法具有极具竞争力的性能。