Ishida Toyokazu, Fedorov Dmitri G, Kitaura Kazuo
Research Institute for Computational Science (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, 305-8568, Japan.
J Phys Chem B. 2006 Jan 26;110(3):1457-63. doi: 10.1021/jp0557159.
To elucidate the catalytic power of enzymes, we analyzed the reaction profile of Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM) by all electron quantum chemical calculations using the fragment molecular orbital (FMO) method. To the best of our knowledge, this is the first report of ab initio-based quantum chemical calculations of the entire enzyme system, where we provide a detailed analysis of the catalytic factors that accomplish transition-state stabilization (TSS). FMO calculations deliver an ab initio-level estimate of the intermolecular interaction between the substrate and the amino acid residues of the enzyme. To clarify the catalytic role of Arg90, we calculated the reaction profile of the wild-type BsCM as well as Lys90 and Cit90 mutant BsCMs. Structural refinement and the reaction path determination were performed at the ab initio QM/MM level, and FMO calculations were applied to the QM/MM refined structures. Comparison between three types of reactions established two collective catalytic factors in the BsCM reaction: (1) the hydrogen bonds connecting the Glu78-Arg90-substrate cooperatively control the stability of TS relative to the ES complex and (2) the positive charge on Arg90 polarizes the substrate in the TS region to gain more electrostatic stabilization.
为阐明酶的催化能力,我们使用片段分子轨道(FMO)方法,通过全电子量子化学计算分析了枯草芽孢杆菌分支酸变位酶(BsCM)的克莱森重排反应历程。据我们所知,这是关于整个酶系统基于从头算的量子化学计算的首次报道,在此我们对实现过渡态稳定(TSS)的催化因素进行了详细分析。FMO计算给出了底物与酶的氨基酸残基之间分子间相互作用的从头算水平估计。为阐明Arg90的催化作用,我们计算了野生型BsCM以及Lys90和Cit90突变型BsCM的反应历程。结构优化和反应路径确定在从头算QM/MM水平上进行,FMO计算应用于QM/MM优化后的结构。三种反应类型之间的比较确定了BsCM反应中的两个共同催化因素:(1)连接Glu78 - Arg90 - 底物的氢键协同控制过渡态相对于酶 - 底物复合物(ES)的稳定性;(2)Arg90上的正电荷使过渡态区域的底物极化,以获得更多静电稳定作用。