Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
Virol Sin. 2024 Aug;39(4):645-654. doi: 10.1016/j.virs.2024.05.001. Epub 2024 May 9.
The increasing emergence and re-emergence of RNA virus outbreaks underlines the urgent need to develop effective antivirals. RNA interference (RNAi) is a sequence-specific gene silencing mechanism that is triggered by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), which exhibits significant promise for antiviral therapy. AGO2-dependent shRNA (agshRNA) generates a single-stranded guide RNA and presents significant advantages over traditional siRNA and shRNA. In this study, we applied a logistic regression algorithm to a previously published chemically siRNA efficacy dataset and built a machine learning-based model with high predictive power. Using this model, we designed siRNA sequences targeting diverse RNA viruses, including human enterovirus A71 (EV71), Zika virus (ZIKV), dengue virus 2 (DENV2), mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and transformed them into agshRNAs. We validated the performance of our agshRNA design by evaluating antiviral efficacies of agshRNAs in cells infected with different viruses. Using the agshRNA targeting EV71 as an example, we showed that the anti-EV71 effect of agshRNA was more potent compared with the corresponding siRNA and shRNA. Moreover, the antiviral effect of agshRNA is dependent on AGO2-processed guide RNA, which can load into the RNA-induced silencing complex (RISC). We also confirmed the antiviral effect of agshRNA in vivo. Together, this work develops a novel antiviral strategy that combines machine learning-based algorithm with agshRNA design to custom design antiviral agshRNAs with high efficiency.
RNA 病毒爆发的不断出现和重现强调了开发有效抗病毒药物的迫切需要。RNA 干扰 (RNAi) 是一种由小干扰 RNA (siRNA) 或短发夹 RNA (shRNA) 触发的序列特异性基因沉默机制,在抗病毒治疗方面显示出巨大的应用前景。AGO2 依赖性 shRNA (agshRNA) 产生单链向导 RNA,与传统的 siRNA 和 shRNA 相比具有显著优势。在本研究中,我们应用逻辑回归算法对之前发表的化学 siRNA 功效数据集进行分析,并构建了一个具有高预测能力的基于机器学习的模型。利用该模型,我们设计了针对多种 RNA 病毒的 siRNA 序列,包括人类肠道病毒 A71 (EV71)、寨卡病毒 (ZIKV)、登革热病毒 2 (DENV2)、鼠肝炎病毒 (MHV) 和严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2),并将其转化为 agshRNA。我们通过评估 agshRNA 在感染不同病毒的细胞中的抗病毒功效来验证 agshRNA 设计的性能。以靶向 EV71 的 agshRNA 为例,我们表明 agshRNA 对 EV71 的抗病毒效果比相应的 siRNA 和 shRNA 更强。此外,agshRNA 的抗病毒效果依赖于 AGO2 加工的向导 RNA,该 RNA 可以加载到 RNA 诱导的沉默复合物 (RISC) 中。我们还在体内证实了 agshRNA 的抗病毒效果。总之,这项工作开发了一种新的抗病毒策略,将基于机器学习的算法与 agshRNA 设计相结合,以高效定制设计抗病毒 agshRNA。