Suppr超能文献

植物多倍体中基因组重排和基因表达变化的机制。

Mechanisms of genomic rearrangements and gene expression changes in plant polyploids.

作者信息

Chen Z Jeffrey, Ni Zhongfu

机构信息

Molecular Cell and Developmental Biology, University of Texas, Austin, 78714, USA.

出版信息

Bioessays. 2006 Mar;28(3):240-52. doi: 10.1002/bies.20374.

Abstract

Polyploidy is produced by multiplication of a single genome (autopolyploid) or combination of two or more divergent genomes (allopolyploid). The available data obtained from the study of synthetic (newly created or human-made) plant allopolyploids have documented dynamic and stochastic changes in genomic organization and gene expression, including sequence elimination, inter-chromosomal exchanges, cytosine methylation, gene repression, novel activation, genetic dominance, subfunctionalization and transposon activation. The underlying mechanisms for these alterations are poorly understood. To promote a better understanding of genomic and gene expression changes in polyploidy, we briefly review origins and forms of polyploidy and summarize what has been learned from genome-wide gene expression analyses in newly synthesized auto-and allopolyploids. We show transcriptome divergence between the progenitors and in the newly formed allopolyploids. We propose models for transcriptional regulation, chromatin modification and RNA-mediated pathways in establishing locus-specific expression of orthologous and homoeologous genes during allopolyploid formation and evolution.

摘要

多倍体是由单个基因组倍增(同源多倍体)或两个或更多不同基因组组合(异源多倍体)产生的。从合成(新创建或人工制造)植物异源多倍体研究中获得的现有数据记录了基因组组织和基因表达中的动态和随机变化,包括序列消除、染色体间交换、胞嘧啶甲基化、基因抑制、新激活、遗传显性、亚功能化和转座子激活。这些改变的潜在机制尚不清楚。为了促进对多倍体中基因组和基因表达变化的更好理解,我们简要回顾多倍体的起源和形式,并总结从新合成的同源和异源多倍体的全基因组基因表达分析中所学到的知识。我们展示了亲本与新形成的异源多倍体之间的转录组差异。我们提出了在异源多倍体形成和进化过程中建立直系同源基因和同源基因位点特异性表达的转录调控、染色质修饰和RNA介导途径的模型。

相似文献

1
Mechanisms of genomic rearrangements and gene expression changes in plant polyploids.
Bioessays. 2006 Mar;28(3):240-52. doi: 10.1002/bies.20374.
2
Homoeologous Exchanges, Segmental Allopolyploidy, and Polyploid Genome Evolution.
Front Genet. 2020 Aug 28;11:1014. doi: 10.3389/fgene.2020.01014. eCollection 2020.
3
Epigenetic phenomena and the evolution of plant allopolyploids.
Mol Phylogenet Evol. 2003 Dec;29(3):365-79. doi: 10.1016/s1055-7903(03)00213-6.
4
Genome evolution of allopolyploids: a process of cytological and genetic diploidization.
Cytogenet Genome Res. 2005;109(1-3):236-49. doi: 10.1159/000082406.
5
Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids.
Annu Rev Plant Biol. 2007;58:377-406. doi: 10.1146/annurev.arplant.58.032806.103835.
6
Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7908-13. doi: 10.1073/pnas.1014138108. Epub 2011 Apr 21.
7
Molecular regulatory mechanisms underlying the adaptability of polyploid plants.
Biol Rev Camb Philos Soc. 2021 Apr;96(2):394-407. doi: 10.1111/brv.12661. Epub 2020 Oct 24.
8
Allopolyploidy--a shaping force in the evolution of wheat genomes.
Cytogenet Genome Res. 2005;109(1-3):250-8. doi: 10.1159/000082407.
9
Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group.
Plant Cell. 2001 Aug;13(8):1735-47. doi: 10.1105/tpc.010082.
10
Genetic and epigenetic interactions in allopolyploid plants.
Plant Mol Biol. 2000 Jun;43(2-3):387-99. doi: 10.1023/a:1006480722854.

引用本文的文献

1
How drought and ploidy level shape gene expression and DNA methylation in Phragmites australis.
Plant Cell Rep. 2025 Aug 12;44(9):197. doi: 10.1007/s00299-025-03585-9.
2
Codon usage bias is presumably affected by tRNA selection effects in Actinidia polyploidization events.
BMC Genomics. 2025 Jul 23;26(1):685. doi: 10.1186/s12864-025-11873-7.
4
Polyploids of Brassicaceae: Genomic Insights and Assembly Strategies.
Plants (Basel). 2024 Jul 27;13(15):2087. doi: 10.3390/plants13152087.
6
Expression and localization of HPG axis-related genes in Carassius auratus with different ploidy.
Front Endocrinol (Lausanne). 2024 Feb 12;15:1336679. doi: 10.3389/fendo.2024.1336679. eCollection 2024.
7
Developmental Instability and Gene Dysregulation in an Extracted Tetraploid from Hexaploid Wheat.
Int J Mol Sci. 2023 Sep 13;24(18):14037. doi: 10.3390/ijms241814037.
10
Retention of Mutations in Colchicine-Induced Ornamental Succulent 'Peerless'.
Plants (Basel). 2022 Dec 7;11(24):3420. doi: 10.3390/plants11243420.

本文引用的文献

2
The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects.
Biol J Linn Soc Lond. 2004 Aug;82(4):689-700. doi: 10.1111/j.1095-8312.2004.00351.x.
3
Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms.
Science. 1994 Apr 15;264(5157):421-4. doi: 10.1126/science.264.5157.421.
4
Trans-acting dosage effects on the expression of model gene systems in maize aneuploids.
Science. 1994 Dec 23;266(5193):1999-2002. doi: 10.1126/science.266.5193.1999.
6
Systemic Endopolyploidy in Arabidopsis thaliana.
Plant Physiol. 1991 Jul;96(3):985-9. doi: 10.1104/pp.96.3.985.
7
The advantages and disadvantages of being polyploid.
Nat Rev Genet. 2005 Nov;6(11):836-46. doi: 10.1038/nrg1711.
8
Genomewide nonadditive gene regulation in Arabidopsis allotetraploids.
Genetics. 2006 Jan;172(1):507-17. doi: 10.1534/genetics.105.047894. Epub 2005 Sep 19.
9
Post-transcriptional control of gene expression: a genome-wide perspective.
Trends Biochem Sci. 2005 Sep;30(9):506-14. doi: 10.1016/j.tibs.2005.07.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验