Mesngon Mariano T, Tarricone Cataldo, Hebbar Sachin, Guillotte Aimee M, Schmitt E William, Lanier Lorene, Musacchio Andrea, King Stephen J, Smith Deanna S
Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA.
J Neurosci. 2006 Feb 15;26(7):2132-9. doi: 10.1523/JNEUROSCI.5095-05.2006.
Mutations in Lis1 cause classical lissencephaly, a developmental brain abnormality characterized by defects in neuronal positioning. Over the last decade, a clear link has been forged between Lis1 and the microtubule motor cytoplasmic dynein. Substantial evidence indicates that Lis1 functions in a highly conserved pathway with dynein to regulate neuronal migration and other motile events. Yeast two-hybrid studies predict that Lis1 binds directly to dynein heavy chains (Sasaki et al., 2000; Tai et al., 2002), but the mechanistic significance of this interaction is not well understood. We now report that recombinant Lis1 binds to native brain dynein and significantly increases the microtubule-stimulated enzymatic activity of dynein in vitro. Lis1 does this without increasing the proportion of dynein that binds to microtubules, indicating that Lis1 influences enzymatic activity rather than microtubule association. Dynein stimulation in vitro is not a generic feature of microtubule-associated proteins, because tau did not stimulate dynein. To our knowledge, this is the first indication that Lis1 or any other factor directly modulates the enzymatic activity of cytoplasmic dynein. Lis1 must be able to homodimerize to stimulate dynein, because a C-terminal fragment (containing the dynein interaction site but missing the self-association domain) was unable to stimulate dynein. Binding and colocalization studies indicate that Lis1 does not interact with all dynein complexes found in the brain. We propose a model in which Lis1 stimulates the activity of a subset of motors, which could be particularly important during neuronal migration and long-distance axonal transport.
Lis1基因的突变会导致经典型无脑回畸形,这是一种发育性脑异常,其特征是神经元定位缺陷。在过去十年中,Lis1与微管运动蛋白胞质动力蛋白之间已建立了明确的联系。大量证据表明,Lis1在与动力蛋白高度保守的途径中发挥作用,以调节神经元迁移和其他运动事件。酵母双杂交研究预测,Lis1直接与动力蛋白重链结合(佐佐木等人,2000年;泰等人,2002年),但这种相互作用的机制意义尚不清楚。我们现在报告,重组Lis1与天然脑动力蛋白结合,并在体外显著增加动力蛋白的微管刺激酶活性。Lis1做到这一点的同时并未增加与微管结合的动力蛋白比例,这表明Lis1影响酶活性而非微管结合。体外对动力蛋白的刺激并非微管相关蛋白的普遍特征,因为tau蛋白并未刺激动力蛋白。据我们所知,这是Lis1或任何其他因子直接调节胞质动力蛋白酶活性的首个迹象。Lis1必须能够形成同源二聚体才能刺激动力蛋白,因为一个C端片段(包含动力蛋白相互作用位点但缺少自缔合结构域)无法刺激动力蛋白。结合和共定位研究表明,Lis1并不与大脑中发现的所有动力蛋白复合物相互作用。我们提出了一个模型,其中Lis1刺激一部分运动蛋白的活性,这在神经元迁移和长距离轴突运输过程中可能尤为重要。