Belkić Dzevad, Belkić Karen
Department of Oncology-Pathology, Karolinska Institute, Stockholm SE-17176, Sweden.
Phys Med Biol. 2006 Mar 7;51(5):1049-75. doi: 10.1088/0031-9155/51/5/001. Epub 2006 Feb 8.
The fast Padé transform (FPT) is thoroughly illustrated on two in vivo time signals encoded at 4 T and 7 T via magnetic resonance spectroscopy (MRS). The exact quantum-mechanical spectrum as the Green function series truncated at any partial sum reduces to the unique quotient of two polynomials, which is the FPT. In this Green function as a Maclaurin series in powers of the harmonic variable, the expansion coefficients are the time signal values as damped complex-exponentials with stationary and non-stationary amplitudes for non-degenerate (Lorentzian) and degenerate (non-Lorentzian) spectra. This is automatically shared by the FPT to represent an enormous advantage over the Hankel-Lanczos singular value decomposition (HLSVD) which works only for Lorentzian spectra. Moreover, the resonance amplitudes in the FPT are obtained analytically, rather than solving a system of linear equations as done in the HLSVD. We use two variants of the FPT, initially defined inside and outside the unit circle, but extended automatically to the whole complex frequency plane by the Cauchy analytical continuation. The converged spectra from these two variants of the FPT are found to give the same results, within the experimental background noise level, and this represents an intrinsic cross-validation of the findings and the error analysis.
快速帕德变换(FPT)通过磁共振波谱(MRS)在两个分别于4T和7T编码的体内时间信号上得到了充分说明。精确的量子力学谱作为格林函数级数在任何部分和处截断后简化为两个多项式的唯一商,这就是FPT。在这个作为谐波变量幂次的麦克劳林级数的格林函数中,展开系数是时间信号值,对于非简并(洛伦兹)和简并(非洛伦兹)谱,它们是具有平稳和非平稳幅度的阻尼复指数。FPT自动具有这一特性,这相对于仅适用于洛伦兹谱的汉克尔 - 兰佐斯奇异值分解(HLSVD)而言是一个巨大优势。此外,FPT中的共振幅度是通过解析得到的,而不像HLSVD那样求解线性方程组。我们使用FPT的两种变体,最初分别定义在单位圆内部和外部,但通过柯西解析延拓自动扩展到整个复频率平面。发现这两种FPT变体收敛的谱在实验背景噪声水平内给出相同的结果,这代表了研究结果的内在交叉验证和误差分析。