Suppr超能文献

基于帕德逼近的磁共振波谱中时间信号的精确量化

Exact quantification of time signals in Padé-based magnetic resonance spectroscopy.

作者信息

Belkić Dzevad

机构信息

Karolinska Institute, PO Box 260, S-171 76 Stockholm, Sweden.

出版信息

Phys Med Biol. 2006 May 21;51(10):2633-70. doi: 10.1088/0031-9155/51/10/018. Epub 2006 May 4.

Abstract

This study reports on the fast Padé transform (FPT) for parametric signal processing of realistically synthesized free induction decay curves whose main spectral features are similar to those encoded clinically from a healthy human brain by means of magnetic resonance spectroscopy (MRS). Here, for the purpose of diagnostics, it is of paramount importance to be able to perform accurate and robust quantification of the investigated time signals. This amounts to solving the challenging harmonic inversion problem as a spectral decomposition of the given time signal by means of reconstruction of the unknown total number of resonances, their complex frequencies and amplitudes yielding the peak positions, widths, heights and phases. On theoretical grounds, the FPT solves exactly this mathematically ill-conditioned inverse problem for any noiseless synthesized time signal comprised of an arbitrarily large (finite or infinite) number of damped complex exponentials with stationary and non-stationary polynomial-type amplitudes leading to Lorentzian (non-degenerate) and non-Lorentzian (degenerate) spectra. Convergent validation for this fact is given via the proof-of-principle which is thoroughly demonstrated by the exact numerical solution of a typical quantification problem from MRS. The presently designed study is a paradigm shift for signal processing in MRS with particular relevance to clinical oncology, due to the unprecedented capability of the fast Padé transform to unequivocally resolve and quantify isolated, tightly overlapped and nearly coincident resonances.

摘要

本研究报告了一种快速帕德变换(FPT),用于对实际合成的自由感应衰减曲线进行参数信号处理,这些曲线的主要光谱特征与通过磁共振波谱(MRS)从健康人脑临床编码的特征相似。在这里,出于诊断目的,能够对所研究的时间信号进行准确而稳健的量化至关重要。这相当于通过重建未知的共振总数、它们的复频率和振幅来解决具有挑战性的谐波反演问题,这些共振的复频率和振幅会产生峰值位置、宽度、高度和相位。从理论上讲,对于任何由任意大(有限或无限)数量的具有平稳和非平稳多项式型振幅的阻尼复指数组成的无噪声合成时间信号,FPT都能精确解决这个数学上病态的反问题,从而得到洛伦兹(非简并)和非洛伦兹(简并)光谱。通过原理验证给出了这一事实的收敛性验证,一个来自MRS的典型量化问题的精确数值解充分证明了这一点。由于快速帕德变换具有明确解析和量化孤立、紧密重叠和几乎重合共振的前所未有的能力,目前设计的这项研究是MRS信号处理的一个范式转变,与临床肿瘤学特别相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验