Suppr超能文献

用于乳腺癌诊断的数学优化磁共振波谱的概念验证研究。

Proof-of-the-Concept Study on Mathematically Optimized Magnetic Resonance Spectroscopy for Breast Cancer Diagnostics.

作者信息

Belkić Dževad, Belkić Karen

机构信息

Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden

Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden School of Community and Global Health, Claremont Graduate University, Claremont, CA, USA Institute for Prevention Research, Keck School of Medicine, University of Southern California, Alhambra, CA, USA.

出版信息

Technol Cancer Res Treat. 2015 Jun;14(3):277-97. doi: 10.1177/1533034614547446. Epub 2014 Sep 21.

Abstract

Magnetic resonance (MR)-based modalities aid breast cancer detection without exposure to ionizing radiation. Magnetic resonance imaging is very sensitive but costly and insufficiently specific. Molecular imaging through magnetic resonance spectroscopy (MRS) can provide information about key metabolites. Here, the measured/encoded time signals cannot be interpreted directly, necessitating mathematics for mapping to the more manageable frequency domain. Conventional applications of MRS are hampered by data analysis via the fast Fourier transform (FFT) and postprocessing by fitting techniques. Most in vivo MRS studies on breast cancer rely upon estimations of total choline (tCHO). These have yielded only incremental improvements in diagnostic accuracy. In vitro studies reveal richer metabolic information for identifying breast cancer, particularly in closely overlapping components of tCHO. Among these are phosphocholine (PC), a marker of malignant transformation of the breast. The FFT cannot assess these congested spectral components. This can be done by the fast Padé transform (FPT), a high-resolution, quantification-equipped method, which we presently apply to noisy MRS time signals consistent with those encoded in breast cancer. The FPT unequivocally and robustly extracted the concentrations of all physical metabolites, including PC. In sharp contrast, the FFT produced a rough envelope spectrum with a few distorted peaks and key metabolites absent altogether. As such, the FFT has poor resolution for these typical MRS time signals from breast cancer. Hence, based on Fourier-estimated envelope spectra, tCHO estimates are unreliable. Using even truncated time signals, the FPT clearly distinguishes noise from true metabolites whose concentrations are accurately extracted. The high resolution of the FPT translates directly into shortened examination time of the patient. These capabilities strongly suggest that by applying the FPT to time signals encoded in vivo from the breast, MRS will, at last, fulfill its potential to become a clinically reliable, cost-effective method for breast cancer detection, including screening/surveillance.

摘要

基于磁共振(MR)的方法有助于乳腺癌检测,且无需暴露于电离辐射。磁共振成像非常灵敏,但成本高昂且特异性不足。通过磁共振波谱(MRS)进行分子成像可提供有关关键代谢物的信息。在此,所测量/编码的时间信号无法直接解读,需要运用数学方法将其映射到更易于处理的频域。MRS的传统应用因通过快速傅里叶变换(FFT)进行数据分析以及采用拟合技术进行后处理而受到阻碍。大多数关于乳腺癌的体内MRS研究依赖于总胆碱(tCHO)的估计。这些研究仅在诊断准确性上取得了渐进式的提高。体外研究揭示了用于识别乳腺癌的更丰富的代谢信息,特别是在tCHO紧密重叠的成分中。其中包括磷酸胆碱(PC),它是乳腺恶性转化的标志物。FFT无法评估这些拥挤的光谱成分。这可以通过快速帕德变换(FPT)来完成,FPT是一种高分辨率、具备定量功能的方法,我们目前将其应用于与乳腺癌编码一致的有噪声的MRS时间信号。FPT明确且稳健地提取了所有物理代谢物的浓度,包括PC。与之形成鲜明对比的是,FFT产生的是一个粗糙的包络谱,只有几个扭曲的峰,关键代谢物完全缺失。因此,对于这些来自乳腺癌的典型MRS时间信号,FFT的分辨率很差。基于傅里叶估计的包络谱,tCHO估计是不可靠的。即使使用截断的时间信号,FPT也能清晰地将噪声与真实代谢物区分开来,并准确提取其浓度。FPT的高分辨率直接转化为患者检查时间的缩短。这些能力有力地表明,通过将FPT应用于乳房在体内编码的时间信号,MRS最终将发挥其潜力,成为一种临床上可靠、具有成本效益的乳腺癌检测方法,包括筛查/监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验