Suppr超能文献

受限条件下的构象生成

Conformer generation under restraints.

作者信息

de Bakker Paul I W, Furnham Nicholas, Blundell Tom L, DePristo Mark A

机构信息

Department of Molecular Biology and Center for Human Genetic Research, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114-2790, USA.

出版信息

Curr Opin Struct Biol. 2006 Apr;16(2):160-5. doi: 10.1016/j.sbi.2006.02.001. Epub 2006 Feb 17.

Abstract

Conformational sampling by direct optimization of an all-atom energy function is ineffective and inefficient because of the ruggedness of the energy landscape. Discrete sampling schemes represent an attractive alternative for generating ensembles of conformers consistent with spatial restraints derived from empirical data. Conformational sampling is becoming increasingly important for structure prediction as the bottleneck in accurate prediction shifts from energy functions to the methods used to find low-energy conformers. Experimental structure determination remains a perennial challenge as investigators tackle larger macromolecular systems, and begin to incorporate more complete descriptions of uncertainty, heterogeneity and dynamics into their models. Computational approaches that combine dense, discrete sampling with all-atom energy evaluation and refinement may help to overcome the remaining barriers to solving these problems.

摘要

通过直接优化全原子能量函数进行构象采样是无效且低效的,因为能量景观崎岖不平。离散采样方案是一种有吸引力的替代方法,可用于生成与来自经验数据的空间约束一致的构象集合。随着准确预测中的瓶颈从能量函数转移到用于寻找低能量构象的方法,构象采样在结构预测中变得越来越重要。随着研究人员处理更大的大分子系统,并开始将对不确定性、异质性和动力学的更完整描述纳入其模型,实验结构测定仍然是一个长期挑战。将密集、离散采样与全原子能量评估和优化相结合的计算方法可能有助于克服解决这些问题的剩余障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验