Suppr超能文献

一种预测和使用高精度距离约束来优化蛋白质结构预测的新方法。

A novel method for predicting and using distance constraints of high accuracy for refining protein structure prediction.

作者信息

Liu Tianyun, Horst Jeremy A, Samudrala Ram

机构信息

Department of Genetics, Stanford University, Stanford, California, USA.

出版信息

Proteins. 2009 Oct;77(1):220-34. doi: 10.1002/prot.22434.

Abstract

The principal bottleneck in protein structure prediction is the refinement of models from lower accuracies to the resolution observed by experiment. We developed a novel constraints-based refinement method that identifies a high number of accurate input constraints from initial models and rebuilds them using restrained torsion angle dynamics (rTAD). We previously created a Bayesian statistics-based residue-specific all-atom probability discriminatory function (RAPDF) to discriminate native-like models by measuring the probability of accuracy for atom type distances within a given model. Here, we exploit RAPDF to score (i.e., filter) constraints from initial predictions that may or may not be close to a native-like state, obtain consensus of top scoring constraints amongst five initial models, and compile sets with no redundant residue pair constraints. We find that this method consistently produces a large and highly accurate set of distance constraints from which to build refinement models. We further optimize the balance between accuracy and coverage of constraints by producing multiple structure sets using different constraint distance cutoffs, and note that the cutoff governs spatially near versus distant effects in model generation. This complete procedure of deriving distance constraints for rTAD simulations improves the quality of initial predictions significantly in all cases evaluated by us. Our procedure represents a significant step in solving the protein structure prediction and refinement problem, by enabling the use of consensus constraints, RAPDF, and rTAD for protein structure modeling and refinement.

摘要

蛋白质结构预测的主要瓶颈在于将较低精度的模型优化至实验观测到的分辨率。我们开发了一种基于约束的新型优化方法,该方法能从初始模型中识别出大量准确的输入约束,并使用受限扭转角动力学(rTAD)对其进行重建。我们之前创建了一种基于贝叶斯统计的残基特异性全原子概率判别函数(RAPDF),通过测量给定模型中原子类型距离的准确概率来区分类似天然状态的模型。在此,我们利用RAPDF对初始预测中的约束进行评分(即筛选),这些约束可能接近也可能不接近类似天然的状态,在五个初始模型中获得得分最高的约束的共识,并编译无冗余残基对约束的集合。我们发现,该方法始终能生成大量高度准确的距离约束集,用于构建优化模型。我们通过使用不同的约束距离截止值生成多个结构集,进一步优化了约束准确性和覆盖范围之间的平衡,并注意到截止值在模型生成中控制着空间上的近程与远程效应。在我们评估的所有情况下,这个为rTAD模拟推导距离约束的完整过程都显著提高了初始预测的质量。我们的方法代表了解决蛋白质结构预测和优化问题的重要一步,通过启用用于蛋白质结构建模和优化的共识约束、RAPDF和rTAD。

相似文献

2
Improved protein structure selection using decoy-dependent discriminatory functions.
BMC Struct Biol. 2004 Jun 18;4:8. doi: 10.1186/1472-6807-4-8.
3
Refinement of protein structure homology models via long, all-atom molecular dynamics simulations.
Proteins. 2012 Aug;80(8):2071-9. doi: 10.1002/prot.24098. Epub 2012 May 15.
4
The effect of experimental resolution on the performance of knowledge-based discriminatory functions for protein structure selection.
Protein Eng Des Sel. 2006 Sep;19(9):431-7. doi: 10.1093/protein/gzl027. Epub 2006 Jul 14.
7
Distance matrix-based approach to protein structure prediction.
J Struct Funct Genomics. 2009 Mar;10(1):67-81. doi: 10.1007/s10969-009-9062-2. Epub 2009 Feb 18.
8
Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.
BMC Struct Biol. 2010 Jul 20;10:22. doi: 10.1186/1472-6807-10-22.
9
Protein structure model refinement in CASP12 using short and long molecular dynamics simulations in implicit solvent.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):189-201. doi: 10.1002/prot.25373. Epub 2017 Sep 1.
10
Selective refinement and selection of near-native models in protein structure prediction.
Proteins. 2015 Oct;83(10):1823-35. doi: 10.1002/prot.24866. Epub 2015 Aug 12.

引用本文的文献

1
Rv0100, a proposed acyl carrier protein in Mycobacterium tuberculosis: expression, purification and crystallization.
Acta Crystallogr F Struct Biol Commun. 2019 Oct 1;75(Pt 10):646-651. doi: 10.1107/S2053230X19012652. Epub 2019 Sep 24.
2
A fragment based method for modeling of protein segments into cryo-EM density maps.
BMC Bioinformatics. 2017 Nov 13;18(1):475. doi: 10.1186/s12859-017-1904-5.
3
Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform.
Curr Pharm Des. 2016;22(21):3109-23. doi: 10.2174/1381612822666160325121943.

本文引用的文献

1
Protein meta-functional signatures from combining sequence, structure, evolution, and amino acid property information.
PLoS Comput Biol. 2008 Sep 26;4(9):e1000181. doi: 10.1371/journal.pcbi.1000181.
3
Protein model refinement using an optimized physics-based all-atom force field.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8268-73. doi: 10.1073/pnas.0800054105. Epub 2008 Jun 11.
4
Raster3D: photorealistic molecular graphics.
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
5
High-resolution structure prediction and the crystallographic phase problem.
Nature. 2007 Nov 8;450(7167):259-64. doi: 10.1038/nature06249. Epub 2007 Oct 14.
6
Critical assessment of methods of protein structure prediction-Round VII.
Proteins. 2007;69 Suppl 8(S8):3-9. doi: 10.1002/prot.21767.
7
An automated assignment-free Bayesian approach for accurately identifying proton contacts from NOESY data.
J Biomol NMR. 2006 Nov;36(3):189-98. doi: 10.1007/s10858-006-9082-1. Epub 2006 Oct 3.
8
The effect of experimental resolution on the performance of knowledge-based discriminatory functions for protein structure selection.
Protein Eng Des Sel. 2006 Sep;19(9):431-7. doi: 10.1093/protein/gzl027. Epub 2006 Jul 14.
9
Conformer generation under restraints.
Curr Opin Struct Biol. 2006 Apr;16(2):160-5. doi: 10.1016/j.sbi.2006.02.001. Epub 2006 Feb 17.
10
Progress in modeling of protein structures and interactions.
Science. 2005 Oct 28;310(5748):638-42. doi: 10.1126/science.1112160.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验