Suppr超能文献

通过低势垒分子动力学生成精确的蛋白质环构象。

Generation of accurate protein loop conformations through low-barrier molecular dynamics.

作者信息

Hornak Viktor, Simmerling Carlos

机构信息

Center for Structural Biology, SUNY at Stony Brook, Stony Brook, New York 11794-3400, USA.

出版信息

Proteins. 2003 Jun 1;51(4):577-90. doi: 10.1002/prot.10363.

Abstract

Prediction and refinement of protein loop structures are important and challenging tasks for which no general solution has been found. In addition to the accuracy of scoring functions, the main problems reside in (1) insufficient statistical sampling and (2) crossing energy barriers that impede conformational rearrangements of the loop. We approach these two issues by using "low-barrier molecular dynamics," a combination of energy smoothing techniques. To address statistical sampling, locally enhanced sampling (LES) is used to produce multiple copies of the loop, thus improving statistics and reducing energy barriers. We introduce a novel extension of LES that can improve local sampling even further through hierarchical subdivision of copies. Even though LES reduces energy barriers, it cannot provide for crossing infinite barriers, which can be problematic when substantial rearrangement of residues is necessary. To permit this kind of loop residue repacking, a "soft-core" potential energy function is introduced, so that atomic overlaps are temporarily allowed. We tested this new combined methodology to a loop in anti-influenza antibody Fab 17/9 (7 residues long) and to another loop in the antiprogesterone antibody DB3 (8 residues). In both cases, starting from random conformations, we were able to locate correct loop structures (including sidechain orientations) with heavy-atom root-mean-square deviation (fit to the nonloop region) of approximately 1.1 A in Fab 17/9 and approximately 1.8 A in DB3. We show that the combination of LES and soft-core potential substantially improves sampling compared to regular molecular dynamics. Moreover, the sampling improvement obtained with this combined approach is significantly better than that provided by either of the two methods alone.

摘要

蛋白质环结构的预测和优化是重要且具有挑战性的任务,目前尚未找到通用的解决方案。除了评分函数的准确性外,主要问题还在于:(1)统计采样不足;(2)跨越阻碍环构象重排的能量障碍。我们通过使用“低势垒分子动力学”(一种能量平滑技术的组合)来解决这两个问题。为了解决统计采样问题,使用局部增强采样(LES)来生成环的多个副本,从而改善统计数据并降低能量障碍。我们引入了一种新的LES扩展方法,通过对副本进行分层细分,可以进一步改善局部采样。尽管LES降低了能量障碍,但它无法跨越无限高的障碍,当需要大量残基重排时这可能会成为问题。为了允许这种环残基重新排列,引入了一种“软核”势能函数,以便暂时允许原子重叠。我们将这种新的组合方法应用于抗流感抗体Fab 17/9中的一个环(7个残基长)和抗孕酮抗体DB3中的另一个环(8个残基)。在这两种情况下,从随机构象开始,我们能够找到正确的环结构(包括侧链取向),在Fab 17/9中重原子均方根偏差(与非环区域拟合)约为1.1埃,在DB3中约为1.8埃。我们表明,与常规分子动力学相比,LES和软核势能的组合大大改善了采样。此外,这种组合方法获得的采样改进明显优于单独使用两种方法中的任何一种。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验