Suppr超能文献

心肌细胞中的线粒体网络呈现出动态耦合行为。

Mitochondrial networks in cardiac myocytes reveal dynamic coupling behavior.

作者信息

Kurz Felix T, Derungs Thomas, Aon Miguel A, O'Rourke Brian, Armoundas Antonis A

机构信息

Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, Massachusetts; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany; Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany.

Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, Massachusetts; Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany.

出版信息

Biophys J. 2015 Apr 21;108(8):1922-33. doi: 10.1016/j.bpj.2015.01.040.

Abstract

Oscillatory behavior of mitochondrial inner membrane potential (ΔΨm) is commonly observed in cells subjected to oxidative or metabolic stress. In cardiac myocytes, the activation of inner membrane pores by reactive oxygen species (ROS) is a major factor mediating intermitochondrial coupling, and ROS-induced ROS release has been shown to underlie propagated waves of ΔΨm depolarization as well as synchronized limit cycle oscillations of ΔΨm in the network. The functional impact of ΔΨm instability on cardiac electrophysiology, Ca(2+) handling, and even cell survival, is strongly affected by the extent of such intermitochondrial coupling. Here, we employ a recently developed wavelet-based analytical approach to examine how different substrates affect mitochondrial coupling in cardiac cells, and we also determine the oscillatory coupling properties of mitochondria in ventricular cells in intact perfused hearts. The results show that the frequency of ΔΨm oscillations varies inversely with the size of the oscillating mitochondrial cluster, and depends on the strength of local intermitochondrial coupling. Time-varying coupling constants could be quantitatively determined by applying a stochastic phase model based on extension of the well-known Kuramoto model for networks of coupled oscillators. Cluster size-frequency relationships varied with different substrates, as did mitochondrial coupling constants, which were significantly larger for glucose (7.78 × 10(-2) ± 0.98 × 10(-2) s(-1)) and pyruvate (7.49 × 10(-2) ± 1.65 × 10(-2) s(-1)) than lactate (4.83 × 10(-2) ± 1.25 × 10(-2) s(-1)) or β-hydroxybutyrate (4.11 × 10(-2) ± 0.62 × 10(-2) s(-1)). The findings indicate that mitochondrial spatiotemporal coupling and oscillatory behavior is influenced by substrate selection, perhaps through differing effects on ROS/redox balance. In particular, glucose-perfusion generates strong intermitochondrial coupling and temporal oscillatory stability. Pathological changes in specific catabolic pathways, which are known to occur during the progression of cardiovascular disease, could therefore contribute to altered sensitivity of the mitochondrial network to oxidative stress and emergent ΔΨm instability, ultimately scaling to produce organ level dysfunction.

摘要

线粒体膜电位(ΔΨm)的振荡行为通常在遭受氧化或代谢应激的细胞中观察到。在心肌细胞中,活性氧(ROS)激活内膜孔是介导线粒体间偶联的主要因素,并且ROS诱导的ROS释放已被证明是ΔΨm去极化传播波以及网络中ΔΨm同步极限环振荡的基础。ΔΨm不稳定性对心脏电生理学、Ca(2+)处理甚至细胞存活的功能影响,受到这种线粒体间偶联程度的强烈影响。在这里,我们采用最近开发的基于小波的分析方法来研究不同底物如何影响心脏细胞中的线粒体偶联,并且我们还确定完整灌注心脏中心室细胞中线粒体的振荡偶联特性。结果表明,ΔΨm振荡频率与振荡线粒体簇的大小成反比,并且取决于局部线粒体间偶联的强度。通过应用基于耦合振荡器网络的著名Kuramoto模型扩展的随机相位模型,可以定量确定时变耦合常数。簇大小 - 频率关系随不同底物而变化,线粒体耦合常数也是如此,葡萄糖(7.78×10(-2)±0.98×10(-2) s(-1))和丙酮酸(7.49×10(-2)±1.65×10(-2) s(-1))的耦合常数明显大于乳酸(4.83×10(-2)±1.25×10(-2) s(-1))或β-羟基丁酸(4.11×10(-2)±0.62×10(-2) s(-1))。这些发现表明线粒体的时空偶联和振荡行为受底物选择的影响,可能是通过对ROS/氧化还原平衡的不同影响。特别是,葡萄糖灌注产生强烈的线粒体间偶联和时间振荡稳定性。因此,已知在心血管疾病进展过程中发生的特定分解代谢途径的病理变化,可能导致线粒体网络对氧化应激的敏感性改变和出现的ΔΨm不稳定性,最终扩展到产生器官水平的功能障碍。

相似文献

1
Mitochondrial networks in cardiac myocytes reveal dynamic coupling behavior.
Biophys J. 2015 Apr 21;108(8):1922-33. doi: 10.1016/j.bpj.2015.01.040.
2
Functional Implications of Cardiac Mitochondria Clustering.
Adv Exp Med Biol. 2017;982:1-24. doi: 10.1007/978-3-319-55330-6_1.
3
Effects of regional mitochondrial depolarization on electrical propagation: implications for arrhythmogenesis.
Circ Arrhythm Electrophysiol. 2014 Feb;7(1):143-51. doi: 10.1161/CIRCEP.113.000600. Epub 2014 Jan 1.
4
Assessing Spatiotemporal and Functional Organization of Mitochondrial Networks.
Methods Mol Biol. 2018;1782:383-402. doi: 10.1007/978-1-4939-7831-1_23.
5
Wavelet analysis reveals heterogeneous time-dependent oscillations of individual mitochondria.
Am J Physiol Heart Circ Physiol. 2010 Nov;299(5):H1736-40. doi: 10.1152/ajpheart.00640.2010. Epub 2010 Sep 10.
6
Mitochondrial instability during regional ischemia-reperfusion underlies arrhythmias in monolayers of cardiomyocytes.
J Mol Cell Cardiol. 2015 Jan;78:90-9. doi: 10.1016/j.yjmcc.2014.09.024. Epub 2014 Sep 28.
9
MitoWave: Spatiotemporal analysis of mitochondrial membrane potential fluctuations during I/R.
Biophys J. 2021 Aug 17;120(16):3261-3271. doi: 10.1016/j.bpj.2021.05.033. Epub 2021 Jul 21.

引用本文的文献

1
Fractal dynamics of individual mitochondrial oscillators measure local inter-mitochondrial coupling.
Biophys J. 2023 Apr 18;122(8):1459-1469. doi: 10.1016/j.bpj.2023.03.011. Epub 2023 Mar 10.
2
Intracellular to Interorgan Mitochondrial Communication in Striated Muscle in Health and Disease.
Endocr Rev. 2023 Jul 11;44(4):668-692. doi: 10.1210/endrev/bnad004.
3
Automated Quantification and Network Analysis of Redox Dynamics in Neuronal Mitochondria.
Methods Mol Biol. 2022;2399:261-274. doi: 10.1007/978-1-0716-1831-8_12.
4
All for one: changes in mitochondrial morphology and activity during syncytial oogenesis†.
Biol Reprod. 2022 Jun 13;106(6):1232-1253. doi: 10.1093/biolre/ioac035.
5
MitoWave: Spatiotemporal analysis of mitochondrial membrane potential fluctuations during I/R.
Biophys J. 2021 Aug 17;120(16):3261-3271. doi: 10.1016/j.bpj.2021.05.033. Epub 2021 Jul 21.
6
Origins of 1/f-like tissue oxygenation fluctuations in the murine cortex.
PLoS Biol. 2021 Jul 15;19(7):e3001298. doi: 10.1371/journal.pbio.3001298. eCollection 2021 Jul.
7
PK11195 Protects From Cell Death Only When Applied During Reperfusion: Succinate-Mediated Mechanism of Action.
Front Physiol. 2021 May 4;12:628508. doi: 10.3389/fphys.2021.628508. eCollection 2021.
8
Propagation of Mitochondria-Derived Reactive Oxygen Species within the Cells.
Antioxidants (Basel). 2021 Jan 15;10(1):120. doi: 10.3390/antiox10010120.
10
Integrating Ultra-Weak Photon Emission Analysis in Mitochondrial Research.
Front Physiol. 2020 Jul 8;11:717. doi: 10.3389/fphys.2020.00717. eCollection 2020.

本文引用的文献

1
Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose.
Am J Physiol Heart Circ Physiol. 2015 Feb 15;308(4):H291-302. doi: 10.1152/ajpheart.00378.2014. Epub 2014 Dec 5.
2
In vivo tissue-wide synchronization of mitochondrial metabolic oscillations.
Cell Rep. 2014 Oct 23;9(2):514-21. doi: 10.1016/j.celrep.2014.09.022. Epub 2014 Oct 16.
3
Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.
Biophys J. 2013 Jan 22;104(2):332-43. doi: 10.1016/j.bpj.2012.11.3808.
4
Redox signaling in cardiac physiology and pathology.
Circ Res. 2012 Sep 28;111(8):1091-106. doi: 10.1161/CIRCRESAHA.111.255216.
6
What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival.
Integr Biol (Camb). 2012 Jan;4(1):65-74. doi: 10.1039/c1ib00124h. Epub 2011 Dec 5.
7
Linking flickering to waves and whole-cell oscillations in a mitochondrial network model.
Biophys J. 2011 Nov 2;101(9):2102-11. doi: 10.1016/j.bpj.2011.09.038. Epub 2011 Nov 1.
8
Frequency enhancement in coupled noisy excitable elements.
Phys Rev Lett. 2011 Jun 24;106(25):254102. doi: 10.1103/PhysRevLett.106.254102. Epub 2011 Jun 23.
9
Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals.
Cell Res. 2011 Sep;21(9):1295-304. doi: 10.1038/cr.2011.81. Epub 2011 May 10.
10
Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.
Phys Rev Lett. 2011 Feb 4;106(5):054102. doi: 10.1103/PhysRevLett.106.054102. Epub 2011 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验