Izmailian N Sh, Oganesyan K B, Wu Ming-Chya, Hu Chin-Kun
Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 2):016128. doi: 10.1103/PhysRevE.73.016128. Epub 2006 Jan 24.
We analyze the partition function of the dimer model on M x N triangular lattice wrapped on the torus obtained by Fendley, Moessner, and Sondhi [Phys. Rev. B 66, 214513, (2002)]. Based on such an expression, we then extend the algorithm of Ivashkevich, Izmailian, and Hu [J. Phys. A 35, 5543 (2002)] to derive the exact asymptotic expansion of the first and second derivatives of the logarithm of the partition function at the critical point and find that the aspect-ratio dependence of finite-size corrections and the finite-size scaling functions are sensitive to the parity of the number of lattice sites along the lattice axis.
我们分析了由芬德利、莫斯纳和桑迪[《物理评论B》66, 214513, (2002)]给出的包裹在环面上的M×N三角晶格上二聚体模型的配分函数。基于这样一个表达式,我们接着扩展了伊瓦什凯维奇、伊兹迈利安和胡[《物理学报A》35, 5543 (2002)]的算法,以推导配分函数对数在临界点处的一阶和二阶导数的精确渐近展开,并发现有限尺寸修正的纵横比依赖性以及有限尺寸标度函数对沿晶格轴的晶格点数的奇偶性敏感。