Suppr超能文献

棋盘 B 格子上二聚物模型的比热和配分函数零点:有限尺寸效应。

Specific heat and partition function zeros for the dimer model on the checkerboard B lattice: Finite-size effects.

机构信息

Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan.

Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.

出版信息

Phys Rev E. 2019 Jan;99(1-1):012102. doi: 10.1103/PhysRevE.99.012102.

Abstract

There are three possible classifications of the dimer weights on the bonds of the checkerboard lattice and they are denoted as checkerboard A, B, and C lattices [Phys. Rev. E 91, 062139 (2015)PLEEE81539-375510.1103/PhysRevE.91.062139]. The dimer model on the checkerboard B and C lattices has much richer critical behavior compared to the dimer model on the checkerboard A lattice. In this paper we study in full detail the dimer model on the checkerboard B lattice. The dimer model on the checkerboard B lattice has two types of critical behavior. In one limit this model is the anisotropic dimer model on rectangular lattice with algebraic decay of correlators and in another limit it is the anisotropic generalized Kasteleyn model with radically different critical behavior. We analyze the partition function of the dimer model on a 2M×2N checkerboard B lattice wrapped on a torus. We find very unusual behavior of the partition function zeros and the specific heat of the dimer model. Remarkably, the partition function zeros of finite-size systems can have very interesting structures, made of rings, concentric circles, radial line segments, or even arabesque structures. We find out that the number of the specific heat peaks and the number of circles of the partition function zeros increases with the system size. The lattice anisotropy of the model has strong effects on the behavior of the specific heat, dominating the relation between the correlation length exponent ν and the shift exponent λ, and λ is generally unequal to 1/ν (λ≠1/ν).

摘要

有三种可能的棋盘晶格键上二聚体权重分类,它们分别被表示为棋盘格 A、B 和 C 晶格[Phys. Rev. E 91, 062139 (2015)PLEEE81539-375510.1103/PhysRevE.91.062139]。与棋盘格 A 晶格上的二聚体模型相比,棋盘格 B 和 C 晶格上的二聚体模型具有更丰富的临界行为。在本文中,我们详细研究了棋盘格 B 晶格上的二聚体模型。棋盘格 B 晶格上的二聚体模型有两种类型的临界行为。在一个极限下,这个模型是具有代数关联函数衰减的矩形晶格上的各向异性二聚体模型,而在另一个极限下,它是具有截然不同的临界行为的各向异性广义 Kasteleyn 模型。我们分析了棋盘格 B 晶格上的 2M×2N 二聚体模型在环面上的缠绕的配分函数。我们发现二聚体模型配分函数零点和比热的非常异常的行为。值得注意的是,有限尺寸系统的配分函数零点可以具有非常有趣的结构,由环、同心圆、径向线段甚至是蔓藤花纹结构组成。我们发现比热峰的数量和配分函数零点的圆的数量随着系统尺寸的增加而增加。模型的晶格各向异性对比热的行为有强烈的影响,主导着关联长度指数 ν 和位移指数 λ 之间的关系,并且 λ 通常不等于 1/ν(λ≠1/ν)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验