Suppr超能文献

通过原子激光冷却实现光的玻色凝聚理论。

Theory of Bose condensation of light via laser cooling of atoms.

作者信息

Wang Chiao-Hsuan, Gullans M J, Porto J V, Phillips William D, Taylor Jacob M

机构信息

Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.

Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.

出版信息

Phys Rev A (Coll Park). 2019 Mar;99(3). doi: 10.1103/physreva.99.031801.

Abstract

A Bose-Einstein condensate (BEC) is a quantum phase of matter achieved at low temperatures. Photons, one of the most prominent species of bosons, do not typically condense due to the lack of a particle number conservation. We recently described a photon thermalization mechanism which gives rise to a grand canonical ensemble of light with effective photon number conservation between a subsystem and a particle reservoir. This mechanism occurs during Doppler laser cooling of atoms where the atoms serve as a temperature reservoir while the cooling laser photons serve as a particle reservoir. In contrast to typical discussions of BEC, our system is better treated with a controlled chemical potential rather than a controlled particle number, and is subject to energy-dependent loss. Here, we address the question of the possibility of a BEC of photons in this laser cooling photon thermalization scenario and theoretically demonstrate that a Bose condensation of photons can be realized by cooling an ensemble of two-level atoms (realizable with alkaline-earth atoms) inside a Fabry-Pérot cavity.

摘要

玻色-爱因斯坦凝聚(BEC)是在低温下实现的一种物质的量子相。光子是最显著的玻色子种类之一,由于缺乏粒子数守恒,通常不会凝聚。我们最近描述了一种光子热化机制,该机制产生了一个光的巨正则系综,在子系统和粒子库之间具有有效的光子数守恒。这种机制发生在原子的多普勒激光冷却过程中,其中原子作为温度库,而冷却激光光子作为粒子库。与典型的玻色-爱因斯坦凝聚讨论不同,我们的系统用可控化学势而非可控粒子数来更好地处理,并且受到能量相关损耗的影响。在这里,我们探讨在这种激光冷却光子热化场景中光子实现玻色-爱因斯坦凝聚的可能性问题,并从理论上证明,通过冷却法布里-珀罗腔内的两能级原子系综(可用碱土原子实现),可以实现光子的玻色凝聚。

相似文献

1
Theory of Bose condensation of light via laser cooling of atoms.
Phys Rev A (Coll Park). 2019 Mar;99(3). doi: 10.1103/physreva.99.031801.
2
Bose-Einstein condensation of photons in an optical microcavity.
Nature. 2010 Nov 25;468(7323):545-8. doi: 10.1038/nature09567.
3
Bose-Einstein Condensation by Polarization Gradient Laser Cooling.
Phys Rev Lett. 2024 Jun 7;132(23):233401. doi: 10.1103/PhysRevLett.132.233401.
4
Bose-Einstein condensation of photons in an erbium-ytterbium co-doped fiber cavity.
Nat Commun. 2019 Feb 14;10(1):747. doi: 10.1038/s41467-019-08527-0.
5
Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates.
Phys Rev Lett. 2016 Jun 3;116(22):225304. doi: 10.1103/PhysRevLett.116.225304. Epub 2016 Jun 2.
6
Observation of grand-canonical number statistics in a photon Bose-Einstein condensate.
Phys Rev Lett. 2014 Jan 24;112(3):030401. doi: 10.1103/PhysRevLett.112.030401. Epub 2014 Jan 21.
7
Bose-Einstein condensation of photons in a long fiber cavity.
Opt Express. 2021 Aug 16;29(17):27807-27815. doi: 10.1364/OE.430406.
8
Bose-Einstein condensation of light: general theory.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022132. doi: 10.1103/PhysRevE.88.022132. Epub 2013 Aug 19.
9
Condensation of N interacting bosons: a hybrid approach to condensate fluctuations.
Phys Rev Lett. 2006 Nov 10;97(19):190402. doi: 10.1103/PhysRevLett.97.190402. Epub 2006 Nov 7.
10
Bose-Einstein condensation of photons in microcavity plasmas.
Phys Rev E. 2023 Jul;108(1):L013201. doi: 10.1103/PhysRevE.108.L013201.

本文引用的文献

1
Nonequilibrium Precondensation of Classical Waves in Two Dimensions Propagating through Atomic Vapors.
Phys Rev Lett. 2018 Feb 2;120(5):055301. doi: 10.1103/PhysRevLett.120.055301.
2
Thermalization of one-dimensional photon gas and thermal lasers in erbium-doped fibers.
Opt Express. 2017 Aug 7;25(16):18963-18973. doi: 10.1364/OE.25.018963.
3
Cavity Cooling of Many Atoms.
Phys Rev Lett. 2017 May 5;118(18):183601. doi: 10.1103/PhysRevLett.118.183601. Epub 2017 May 1.
4
Sisyphus Thermalization of Photons in a Cavity-Coupled Double Quantum Dot.
Phys Rev Lett. 2016 Jul 29;117(5):056801. doi: 10.1103/PhysRevLett.117.056801. Epub 2016 Jul 25.
5
Supercooling of Atoms in an Optical Resonator.
Phys Rev Lett. 2016 Apr 15;116(15):153002. doi: 10.1103/PhysRevLett.116.153002.
6
Nonequilibrium model of photon condensation.
Phys Rev Lett. 2013 Sep 6;111(10):100404. doi: 10.1103/PhysRevLett.111.100404. Epub 2013 Sep 4.
7
Observation of grand-canonical number statistics in a photon Bose-Einstein condensate.
Phys Rev Lett. 2014 Jan 24;112(3):030401. doi: 10.1103/PhysRevLett.112.030401. Epub 2014 Jan 21.
8
Statistical physics of Bose-Einstein-condensed light in a dye microcavity.
Phys Rev Lett. 2012 Apr 20;108(16):160403. doi: 10.1103/PhysRevLett.108.160403.
9
Bose-Einstein condensation of photons in an optical microcavity.
Nature. 2010 Nov 25;468(7323):545-8. doi: 10.1038/nature09567.
10
Dicke quantum phase transition with a superfluid gas in an optical cavity.
Nature. 2010 Apr 29;464(7293):1301-6. doi: 10.1038/nature09009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验