Suppr超能文献

GG非经典碱基对构象变化的最小能量路径的推挤弹性带计算

Nudged elastic band calculation of minimal energy paths for the conformational change of a GG non-canonical pair.

作者信息

Mathews David H, Case David A

机构信息

Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, NY 14642, USA.

出版信息

J Mol Biol. 2006 Apr 14;357(5):1683-93. doi: 10.1016/j.jmb.2006.01.054. Epub 2006 Feb 3.

Abstract

The nudged elastic band (NEB) technique has been implemented in AMBER to calculate low-energy paths for conformational changes. A novel simulated annealing protocol that does not require an initial hypothesis for the path is used to sample low-energy paths. This was used to study the conformational change of an RNA cis Watson-Crick/Hoogsteen GG non-canonical pair, with one G syn around the glycosidic bond and the other anti. A previous solution structure, determined by NMR-constrained modeling, demonstrated that the GG pairs change from (syn)G-(anti)G to (anti)G-(syn)G in the context of duplex r(GCAGGCGUGC) on the millisecond timescale. The set of low-energy paths found by NEB show that each G flips independently around the glycosidic bond, with the anti G flipping to syn first. Guanine bases flip without opening adjacent base-pairs by protruding into the major groove, accommodated by a transient change by the ribose to C2'-exo sugar pucker. Hydrogen bonds between bases and the backbone, which lower the energetic barrier to flipping, are observed along the path. The results show the plasticity of RNA base-pairs in helices, which is important for biological processes, including mismatch repair, protein recognition, and translation. The modeling of the GG conformational change also demonstrates that NEB can be used to discover non-trivial paths for macromolecules and therefore NEB can be used as an exploratory method for predicting putative conformational change paths.

摘要

在AMBER中已实现推挤弹性带(NEB)技术,用于计算构象变化的低能路径。一种新颖的模拟退火方案被用于采样低能路径,该方案不需要对路径有初始假设。这被用于研究RNA顺式沃森-克里克/ hoogsteen GG非经典碱基对的构象变化,其中一个G在糖苷键周围为顺式,另一个为反式。先前通过NMR约束建模确定的溶液结构表明,在双链体r(GCAGGCGUGC)的毫秒时间尺度上,GG碱基对从(顺式)G-(反式)G转变为(反式)G-(顺式)G。NEB找到的低能路径集表明,每个G围绕糖苷键独立翻转,反式G先翻转到顺式。鸟嘌呤碱基通过突入主沟而翻转,而不打开相邻碱基对,核糖的瞬态变化使其转变为C2'-外向糖构象。沿着路径观察到碱基与主链之间的氢键,这些氢键降低了翻转的能量障碍。结果表明RNA螺旋中碱基对的可塑性,这对包括错配修复、蛋白质识别和翻译在内的生物过程很重要。GG构象变化的建模还表明,NEB可用于发现大分子的非平凡路径,因此NEB可作为预测假定构象变化路径的探索性方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验