Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
Nucleic Acids Res. 2020 Aug 20;48(14):8146-8164. doi: 10.1093/nar/gkaa546.
Riboswitches are structured RNA motifs that recognize metabolites to alter the conformations of downstream sequences, leading to gene regulation. To investigate this molecular framework, we determined crystal structures of a preQ1-I riboswitch in effector-free and bound states at 2.00 Å and 2.65 Å-resolution. Both pseudoknots exhibited the elusive L2 loop, which displayed distinct conformations. Conversely, the Shine-Dalgarno sequence (SDS) in the S2 helix of each structure remained unbroken. The expectation that the effector-free state should expose the SDS prompted us to conduct solution experiments to delineate environmental changes to specific nucleobases in response to preQ1. We then used nudged elastic band computational methods to derive conformational-change pathways linking the crystallographically-determined effector-free and bound-state structures. Pathways featured: (i) unstacking and unpairing of L2 and S2 nucleobases without preQ1-exposing the SDS for translation and (ii) stacking and pairing L2 and S2 nucleobases with preQ1-sequestering the SDS. Our results reveal how preQ1 binding reorganizes L2 into a nucleobase-stacking spine that sequesters the SDS, linking effector recognition to biological function. The generality of stacking spines as conduits for effector-dependent, interdomain communication is discussed in light of their existence in adenine riboswitches, as well as the turnip yellow mosaic virus ribosome sensor.
Riboswitches 是一种结构 RNA 基序,可识别代谢物以改变下游序列的构象,从而调节基因表达。为了研究这个分子框架,我们在无效应物和结合状态下以 2.00Å 和 2.65Å 的分辨率确定了 preQ1-I riboswitch 的晶体结构。两个假结都表现出难以捉摸的 L2 环,其呈现出不同的构象。相反,每个结构的 S2 螺旋中的 Shine-Dalgarno 序列 (SDS) 保持完整。我们期望无效应物状态应该暴露 SDS,因此我们进行了溶液实验,以描绘 SDS 对特定核碱基的环境变化,以响应 preQ1。然后,我们使用受迫弹性带计算方法得出连接晶体确定的无效应物和结合状态结构的构象变化途径。途径具有以下特征:(i) 未配对 L2 和 S2 核碱基,无 preQ1 暴露 SDS 进行翻译,以及 (ii) 配对 L2 和 S2 核碱基与 preQ1 结合,将 SDS 隔开。我们的结果揭示了 preQ1 结合如何将 L2 重新组织成一个核碱基堆积的脊柱,将 SDS 隔开,将效应物识别与生物学功能联系起来。鉴于在腺嘌呤 riboswitch 以及芜菁黄花叶病毒核糖体传感器中存在堆叠脊柱作为效应物依赖性、域间通信的通道,讨论了堆叠脊柱的普遍性。