Suppr超能文献

在慢性病治疗所需人数的计算中,发现年化率比绝对风险降低率更优。

Annualized was found better than absolute risk reduction in the calculation of number needed to treat in chronic conditions.

作者信息

Mayne Tracy J, Whalen Edward, Vu An

机构信息

Outcomes Research, Pfizer Pharmaceuticals, 235 East 42nd Street, 205/9/10, New York, NY 10017, USA.

出版信息

J Clin Epidemiol. 2006 Mar;59(3):217-23. doi: 10.1016/j.jclinepi.2005.07.006. Epub 2005 Oct 13.

Abstract

BACKGROUND AND OBJECTIVE

Recent studies have calculated number needed to treat (NNT) estimates based on annualized rates; however, the ramifications of altering the NNT statistic have not yet been explored in the literature. Here we introduce the concept of annualized NNT (ANNT), and apply it to data from randomized controlled trials (RCTs).

METHODS

Incidence rates from RCTs for serious adverse events for three medicines were compared to an older class of drugs. NNT and ANNT were calculated from the event rates for these events.

RESULTS

Based on the data, the NNT to prevent one adverse event a year vs. older medications was drug A, ANNT = 88; drug B, ANNT = 77; drug C, ANNT = 68. Equivalent calculations based on Bayesian statistics are drug C, ANNT = 54; drug B, ANNT = 49. Drug A produced a bimodal distribution, with one mode within the NNT range and the other in the number needed to harm range.

CONCLUSIONS

NNT can erroneously inflate differences between treatments when based on absolute and not differential safety. We propose that NNT be limited to acute conditions with short-term, well-defined treatment courses, and that ANNT be used for chronic conditions.

摘要

背景与目的

近期研究基于年化率计算所需治疗人数(NNT)估计值;然而,改变NNT统计量的影响在文献中尚未得到探讨。在此,我们引入年化NNT(ANNT)的概念,并将其应用于随机对照试验(RCT)的数据。

方法

将三种药物严重不良事件的RCT发生率与一类较老的药物进行比较。根据这些事件的发生率计算NNT和ANNT。

结果

基于数据,与较老药物相比,每年预防一例不良事件的NNT为:药物A,ANNT = 88;药物B,ANNT = 77;药物C,ANNT = 68。基于贝叶斯统计的等效计算为:药物C,ANNT = 54;药物B,ANNT = 49。药物A产生双峰分布,一个峰在NNT范围内,另一个峰在伤害所需人数范围内。

结论

当基于绝对安全性而非差异安全性时,NNT可能会错误地夸大治疗之间的差异。我们建议NNT仅限于具有短期、明确治疗疗程的急性病症,而ANNT用于慢性病症。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验