Zirak P, Penzkofer A, Schiereis T, Hegemann P, Jung A, Schlichting I
Institut II -- Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstrasse 31, D-93053 Regensburg, Germany.
J Photochem Photobiol B. 2006 Jun 1;83(3):180-94. doi: 10.1016/j.jphotobiol.2005.12.015. Epub 2006 Feb 21.
The BLUF protein BlrB from the non-sulphur anoxyphototrophic purple bacterium Rhodobacter sphaeroides is characterized by absorption and emission spectroscopy. BlrB expressed from E. coli binding FAD, FMN, and riboflavin (called BrlB(I)) and recombinant BlrB containing only FAD (called BlrB(II)) are investigated. The dark-adapted proteins exist in two different receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF(r,f) and BLUF(r,sl)). Some of the flavin-cofactor (ca. 8%) is unbound in thermodynamic equilibrium with the bound cofactor. The two receptor conformations are transformed to putative signalling states (BLUF(s,f) and BLUF(s,sl)) of decreased fluorescence efficiency and shortened fluorescence lifetime by blue-light excitation. In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 2s. Quantum yields of signalling state formation of about 90% for BlrB(II) and about 40% for BlrB(I) were determined by intensity dependent transmission measurements. Extended blue-light excitation causes unbound flavin degradation (formation of lumichrome and lumiflavin-derivatives) and bound cofactor conversion to the semiquinone form. The flavin-semiquinone further reduces and the reduced flavin re-oxidizes back in the dark. A photo-dynamics scheme is presented and relevant quantum efficiencies and time constants are determined.
来自非硫厌氧光合紫色细菌球形红杆菌的BLUF蛋白BlrB通过吸收和发射光谱进行表征。研究了从大肠杆菌表达的结合FAD、FMN和核黄素的BlrB(称为BrlB(I))以及仅含有FAD的重组BlrB(称为BlrB(II))。暗适应的蛋白质以两种不同的受体构象(受体状态)存在,具有不同的亚纳秒荧光寿命(BLUF(r,f)和BLUF(r,sl))。一些黄素辅因子(约8%)在与结合的辅因子的热力学平衡中未结合。通过蓝光激发,这两种受体构象转变为荧光效率降低和荧光寿命缩短的假定信号状态(BLUF(s,f)和BLUF(s,sl))。在室温黑暗中,两种信号状态都以约2秒的时间常数恢复到初始受体状态。通过强度依赖性透射测量确定了BlrB(II)约90%和BlrB(I)约40%的信号状态形成量子产率。延长的蓝光激发会导致未结合的黄素降解(形成发光色素和发光黄素衍生物)以及结合的辅因子转化为半醌形式。黄素半醌进一步还原,还原的黄素在黑暗中重新氧化。提出了一个光动力学方案,并确定了相关的量子效率和时间常数。