Suppr超能文献

不等鞭毛类生物中谷氨酰胺合成酶的进化:内共生基因转移及光合作用早期进化的证据

Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.

作者信息

Robertson Deborah L, Tartar Aurélien

机构信息

Biology Department, Clark University.

出版信息

Mol Biol Evol. 2006 May;23(5):1048-55. doi: 10.1093/molbev/msj110. Epub 2006 Feb 22.

Abstract

Although the endosymbiotic evolution of chloroplasts through primary and secondary associations is well established, the evolutionary timing and stability of the secondary endosymbiotic events is less well resolved. Heterokonts include both photosynthetic and nonphotosynthetic members and the nonphotosynthetic lineages branch basally in phylogenetic reconstructions. Molecular and morphological data indicate that heterokont chloroplasts evolved via a secondary endosymbiosis, involving a heterotrophic host cell and a photosynthetic ancestor of the red algae and this endosymbiotic event may have preceded the divergence of heterokonts and alveolates. If photosynthesis evolved early in this lineage, nuclear genomes of the nonphotosynthetic groups may contain genes that are not essential to photosynthesis but were derived from the endosymbiont genome through gene transfer. These genes offer the potential to trace the evolutionary history of chloroplast gains and losses within these lineages. Glutamine synthetase (GS) is essential for ammonium assimilation and glutamine biosynthesis in all organisms. Three paralogous gene families (GSI, GSII, and GSIII) have been identified and are broadly distributed among prokaryotic and eukaryotic lineages. In diatoms (Heterokonta), the nuclear-encoded chloroplast and cytosolic-localized GS isoforms are encoded by members of the GSII and GSIII family, respectively. Here, we explore the evolutionary history of GSII in both photosynthetic and nonphotosynthetic heterokonts, red algae, and other eukaryotes. GSII cDNA sequences were obtained from two species of oomycetes by polymerase chain reaction amplification. Additional GSII sequences from eukaryotes and bacteria were obtained from publicly available databases and genome projects. Bayesian inference and maximum likelihood phylogenetic analyses of GSII provided strong support for the monophyly of heterokonts, rhodophytes, chlorophytes, and plants and strong to moderate support for the Opisthokonts. Although the phylogeny is reflective of the unikont/bikont division of eukaryotes, we propose based on the robustness of the phylogenetic analyses that the heterokont GSII gene evolved via endosymbiotic gene transfer from the nucleus of the red-algal endosymbiont to the nucleus of the host. The lack of GSIII sequences in the oomycetes examined here further suggests that the GSIII gene that functions in the cytosol of photosynthetic heterokonts was replaced by the endosymbiont-derived GSII gene.

摘要

虽然叶绿体通过初级和次级共生的内共生进化已得到充分证实,但次级内共生事件的进化时间和稳定性仍不太明确。不等鞭毛类包括光合和非光合成员,在系统发育重建中,非光合谱系位于基部。分子和形态学数据表明,不等鞭毛类叶绿体通过次级内共生进化而来,涉及一个异养宿主细胞和红藻的光合祖先,并且这种内共生事件可能早于不等鞭毛类和囊泡虫类的分化。如果光合作用在这个谱系中早期进化,那么非光合类群的核基因组可能包含一些对光合作用并非必需但通过基因转移从内共生体基因组衍生而来的基因。这些基因提供了追踪这些谱系中叶绿体得失进化历史的潜力。谷氨酰胺合成酶(GS)对所有生物的铵同化和谷氨酰胺生物合成至关重要。已鉴定出三个旁系同源基因家族(GSI、GSII和GSIII),它们广泛分布于原核和真核谱系中。在硅藻(不等鞭毛类)中,核编码的叶绿体和胞质定位的GS同工型分别由GSII和GSIII家族的成员编码。在这里,我们探讨了光合和非光合不等鞭毛类、红藻及其他真核生物中GSII的进化历史。通过聚合酶链反应扩增从两种卵菌中获得了GSII cDNA序列。从公开可用的数据库和基因组计划中获得了来自真核生物和细菌的其他GSII序列。对GSII的贝叶斯推断和最大似然系统发育分析为不等鞭毛类、红藻、绿藻和植物的单系性提供了有力支持,对后鞭毛生物提供了强到中等程度的支持。尽管系统发育反映了真核生物的单鞭毛/双鞭毛划分,但基于系统发育分析的稳健性,我们提出不等鞭毛类GSII基因是通过内共生基因转移从红藻内共生体的细胞核转移到宿主细胞核进化而来的。此处检测的卵菌中缺乏GSIII序列,这进一步表明在光合不等鞭毛类胞质中起作用的GSIII基因被内共生体衍生的GSII基因所取代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验