Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA.
Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
Nat Commun. 2019 Oct 7;10(1):4552. doi: 10.1038/s41467-019-12407-y.
Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.
硅藻通过竞争从硝酸盐中获取氮元素,然而,人们对于支撑这种能力的机制知之甚少。基因组和基于基因组的研究表明,硅藻具有独特的氮代谢特征,但是对于其对营养物质利用和生长的影响还知之甚少。通过结合转录组学、蛋白质组学、代谢组学、通量组学和通量平衡分析,我们研究了模型三角褐指藻中氮利用的短期变化,从而在系统层面上理解了氮的同化和细胞内分布。在硅藻中,叶绿体和线粒体在碳氮代谢的关键交叉点上进行能量整合。参与这种整合的途径是定位于细胞器的谷氨酰胺合成酶-谷氨酸合酶循环、用于氨基部分交换的天冬氨酸和丙氨酸系统,以及阐明硅藻脲循环作用的分裂细胞器精氨酸生物合成途径。这种独特的结构使硅藻能够有效地适应氮素状态的变化,从而比其他浮游植物具有生态优势。