Suppr超能文献

七聚体滑码位点组成对不同真核系统中-1移码效应的比较研究。

Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems.

作者信息

Plant Ewan P, Dinman Jonathan D

机构信息

Department of Cell Biology and Molecular Genetics, Microbiology Building, Room 2135, University of Maryland, College Park, Maryland 20742, USA.

出版信息

RNA. 2006 Apr;12(4):666-73. doi: 10.1261/rna.2225206. Epub 2006 Feb 22.

Abstract

Studies of programmed -1 ribosomal frameshifting (-1 PRF) have been approached over the past two decades by many different laboratories using a diverse array of virus-derived frameshift signals in translational assay systems derived from a variety of sources. Though it is generally acknowledged that both absolute and relative -1 PRF efficiency can vary in an assay system-dependent manner, no methodical study of this phenomenon has been undertaken. To address this issue, a series of slippery site mutants of the SARS-associated coronavirus frameshift signal were systematically assayed in four different eukaryotic translational systems. HIV-1 promoted frameshifting was also compared between Escherichia coli and a human T-cell line expression systems. The results of these analyses highlight different aspects of each system, suggesting in general that (1) differences can be due to the assay systems themselves; (2) phylogenetic differences in ribosome structure can affect frameshifting efficiency; and (3) care must be taken to employ the closest phylogenetic match between a specific -1 PRF signal and the choice of translational assay system.

摘要

在过去二十年里,许多不同的实验室采用来自多种来源的翻译分析系统,利用各种各样源自病毒的移码信号,对程序性-1核糖体移码(-1 PRF)进行了研究。尽管人们普遍认为,绝对和相对-1 PRF效率会因分析系统的不同而有所变化,但尚未对这一现象进行系统的研究。为了解决这个问题,我们在四种不同的真核翻译系统中,对严重急性呼吸综合征相关冠状病毒移码信号的一系列滑码位点突变体进行了系统分析。还比较了大肠杆菌和人T细胞系表达系统中HIV-1促进的移码情况。这些分析结果突出了每个系统的不同方面,总体表明:(1)差异可能归因于分析系统本身;(2)核糖体结构的系统发育差异会影响移码效率;(3)必须注意在特定的-1 PRF信号与翻译分析系统的选择之间采用最接近的系统发育匹配。

相似文献

2
Analyses of frameshifting at UUU-pyrimidine sites.
Nucleic Acids Res. 1997 May 15;25(10):2005-11. doi: 10.1093/nar/25.10.2005.
3
Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5830-5. doi: 10.1073/pnas.0608668104. Epub 2007 Mar 27.
5
The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.
PLoS One. 2015 Mar 25;10(3):e0122176. doi: 10.1371/journal.pone.0122176. eCollection 2015.
9
A dynamical model of programmed -1 ribosomal frameshifting.
J Theor Biol. 2013 Nov 7;336:119-31. doi: 10.1016/j.jtbi.2013.07.022. Epub 2013 Jul 30.
10
Frameshifting by eukaryotic ribosomes during expression of Escherichia coli release factor 2.
Proc Biol Sci. 1991 Jun 22;244(1311):207-10. doi: 10.1098/rspb.1991.0072.

引用本文的文献

1
Evolutionary origin of the frameshift sites in the ribosomal frameshifting genes of Euplotes.
BMC Genomics. 2025 Jul 19;26(1):676. doi: 10.1186/s12864-025-11870-w.
2
Ribosomal frameshifting at normal codon repeats recodes functional chimeric proteins in human.
Nucleic Acids Res. 2024 Mar 21;52(5):2463-2479. doi: 10.1093/nar/gkae035.
3
Evolution of coronavirus frameshifting elements: Competing stem networks explain conservation and variability.
Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2221324120. doi: 10.1073/pnas.2221324120. Epub 2023 May 8.
4
Analysis of nested alternate open reading frames and their encoded proteins.
NAR Genom Bioinform. 2022 Oct 19;4(4):lqac076. doi: 10.1093/nargab/lqac076. eCollection 2022 Dec.
6
Mutagenic Analysis of the HIV Restriction Factor Shiftless.
Viruses. 2022 Jun 30;14(7):1454. doi: 10.3390/v14071454.
8
Comparing antiviral strategies against COVID-19 via multiscale within-host modelling.
R Soc Open Sci. 2021 Aug 11;8(8):210082. doi: 10.1098/rsos.210082. eCollection 2021 Aug.
9
Programmed -1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes.
Comput Struct Biotechnol J. 2021 Jun 14;19:3580-3588. doi: 10.1016/j.csbj.2021.06.015. eCollection 2021.
10

本文引用的文献

1
Structural insights into translational fidelity.
Annu Rev Biochem. 2005;74:129-77. doi: 10.1146/annurev.biochem.74.061903.155440.
2
A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.
PLoS Biol. 2005 Jun;3(6):e172. doi: 10.1371/journal.pbio.0030172. Epub 2005 May 17.
4
Systematic analysis of bicistronic reporter assay data.
Nucleic Acids Res. 2004 Nov 23;32(20):e160. doi: 10.1093/nar/gnh157.
7
Decoding the genome: a modified view.
Nucleic Acids Res. 2004 Jan 9;32(1):223-38. doi: 10.1093/nar/gkh185. Print 2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验