Schnier P D, Klassen J S, Strittmatter E F, Williams E R
Contribution from the Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Am Chem Soc. 1998 Sep 23;120(37):9605-13. doi: 10.1021/ja973534h.
The dissociation kinetics of a series of complementary and noncomplementary DNA duplexes, (TGCA)(2) (3-), (CCGG)(2) (3-), (AATTAAT)(2) (3-), (CCGGCCG)(2) (3-), A(7)*T(7) (3-), A(7)*A(7) (3-), T(7)*T(7) (3-), and A(7)*C(7) (3-) were investigated using blackbody infrared radiative dissociation in a Fourier transform mass spectrometer. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained. Activation energies range from 1.2 to 1.7 eV, and preexponential factors range from 10(13) to 10(19) s(-1). Dissociation of the duplexes results in cleavage of the noncovalent bonds and/or cleavage of covalent bonds leading to loss of a neutral nucleobase followed by backbone cleavage producing sequence-specific (a - base) and w ions. Four pieces of evidence are presented which indicate that Watson-Crick (WC) base pairing is preserved in complementary DNA duplexes in the gas phase: i. the activation energy for dissociation of the complementary dimer, A(7)*T(7) (3-), to the single strands is significantly higher than that for the related noncomplementary A(7)*A(7) (3-) and T(7)*T(7) (3-) dimers, indicating a stronger interaction between strands with a specific base sequence, ii. extensive loss of neutral adenine occurs for A(7)*A(7) (3-) and A(7)*C(7) (3-) but not for A(7)*T(7) (3-) consistent with this process being shut down by WC hydrogen bonding, iii. a correlation is observed between the measured activation energy for dissociation to single strands and the dimerization enthalpy (-DeltaH(d)) in solution, and iv. molecular dynamics carried out at 300 and 400 K indicate that WC base pairing is preserved for A(7)*T(7) (3-) duplex, although the helical structure is essentially lost. In combination, these results provide strong evidence that WC base pairing can exist in the complete absence of solvent.
使用傅里叶变换质谱仪中的黑体红外辐射解离技术,研究了一系列互补和非互补DNA双链体(TGCA)(2)(3-)、(CCGG)(2)(3-)、(AATTAAT)(2)(3-)、(CCGGCCG)(2)(3-)、A(7)*T(7)(3-)、A(7)*A(7)(3-)、T(7)*T(7)(3-)和A(7)*C(7)(3-)的解离动力学。根据单分子解离速率常数对温度的依赖性,获得了零压力极限下的阿累尼乌斯活化参数。活化能范围为1.2至1.7电子伏特,指前因子范围为10(13)至10(19) s(-1)。双链体的解离导致非共价键的断裂和/或共价键的断裂,导致中性核碱基的丢失,随后主链断裂,产生序列特异性(a - 碱基)和w离子。提出了四条证据,表明在气相中互补DNA双链体中保留了沃森 - 克里克(WC)碱基配对:i. 互补二聚体A(7)*T(7)(3-)解离为单链的活化能明显高于相关非互补A(7)*A(7)(3-)和T(7)*T(7)(3-)二聚体,表明具有特定碱基序列的链之间相互作用更强;ii. A(7)*A(7)(3-)和A(7)*C(7)(3-)发生大量中性腺嘌呤的丢失,而A(7)*T(7)(3-)则没有,这与该过程被WC氢键阻断一致;iii. 观察到解离为单链的测量活化能与溶液中二聚化焓(-ΔH(d))之间存在相关性;iv. 在300和400 K下进行的分子动力学表明,尽管螺旋结构基本丧失,但A(7)*T(7)(3-)双链体中保留了WC碱基配对。综合起来,这些结果提供了有力证据,表明在完全没有溶剂的情况下可以存在WC碱基配对。