Sawers G, Heider J, Zehelein E, Böck A
Lehrstuhl für Mikrobiologie, Universität München, Germany.
J Bacteriol. 1991 Aug;173(16):4983-93. doi: 10.1128/jb.173.16.4983-4993.1991.
A detailed analysis of the expression of the sel genes, the products of which are necessary for the specific incorporation of selenium into macromolecules in Escherichia coli, showed that transcription was constitutive, being influenced neither by aerobiosis or anaerobiosis nor by the intracellular selenium concentration. The gene encoding the tRNA molecule which is specifically aminoacylated with selenocysteine (selC) proved to be monocistronic. In contrast, the other three sel genes (selA, -B, and -D) were shown to be constituents of two unlinked operons. The selA and selB genes formed one transcriptional unit (sel vector AB), while selD was shown to be the central gene in an operon including two other genes, the promoter distal of which (topB) encodes topoisomerase III. The promoter proximal gene (orf183) was sequenced and shown to encode a protein consisting of 183 amino acids (Mr, 20,059), the amino acid sequence of which revealed no similarity to any currently known protein. The products of the orf183 and topB genes were required neither for selenoprotein biosynthesis nor for selenation of tRNAs. selAB transcription was driven by a single, weak promoter; however, two major selD operon transcripts were identified. The longer initiated just upstream of the orf183 gene, whereas the 5' end of the other mapped in a 116-bp nontranslated region between orf183 and selD. Aerobic synthesis of all four sel gene products incited a reexamination of a weak 110-kDa selenopolypeptide which is produced under these conditions. The aerobic appearance of this 110-kDa selenopolypeptide was not a consequence of residual expression of the gene encoding the 110-kDa selenopolypeptide of the anaerobically inducible formate dehydrogenase N (FDHN) enzyme, as previously surmised, but rather resulted from the expression of a gene encoding a third, distinct selenopolypeptide in E. coli. A mutant strain no longer capable of synthesizing the 80- and 110-kDa selenopolypeptides of FDHH and FDHN, respectively, still synthesized this alternative 110-kDa selenopolypeptide which was present at equivalent levels in cells grown aerobically and anaerobically with nitrate. Furthermore, this strain exhibited a formate- and sel gene-dependent respiratory activity, indicating that it is probable that this selenopolypeptide constitutes a major component of the formate oxidase, an enzyme activity initially discovered in aerobically grown E. coli more than 30 years ago.
对硒基因(sel基因)表达的详细分析表明,其转录是组成型的,既不受需氧或厌氧条件的影响,也不受细胞内硒浓度的影响,这些基因的产物对于硒在大肠杆菌中特异性掺入大分子是必需的。编码用硒代半胱氨酸特异性氨酰化的tRNA分子的基因(selC)被证明是单顺反子的。相反,其他三个sel基因(selA、-B和-D)被证明是两个不连锁操纵子的组成部分。selA和selB基因形成一个转录单元(sel载体AB),而selD被证明是一个操纵子的中心基因,该操纵子包括另外两个基因,其中位于启动子远端的基因(topB)编码拓扑异构酶III。对启动子近端基因(orf183)进行了测序,结果显示它编码一种由183个氨基酸组成的蛋白质(Mr,20,059),其氨基酸序列与目前已知的任何蛋白质都没有相似性。orf183和topB基因的产物对于硒蛋白生物合成和tRNA的硒化都不是必需的。selAB转录由一个单一的弱启动子驱动;然而,鉴定出了两个主要的selD操纵子转录本。较长的转录本在orf183基因上游开始,而另一个转录本的5'端定位在orf183和selD之间116 bp的非翻译区。所有四种sel基因产物的需氧合成促使人们重新审视在这些条件下产生的一种110 kDa的弱硒多肽。这种110 kDa硒多肽的需氧出现并非如先前推测的那样是厌氧诱导型甲酸脱氢酶N(FDHN)的110 kDa硒多肽编码基因残留表达的结果,而是由大肠杆菌中编码第三种不同硒多肽的基因表达所致。一个不再能够分别合成FDHH和FDHN的80 kDa和110 kDa硒多肽的突变菌株,仍然能够合成这种替代性的110 kDa硒多肽,其在以硝酸盐为底物需氧和厌氧生长的细胞中含量相当。此外,该菌株表现出依赖甲酸和sel基因的呼吸活性,这表明这种硒多肽很可能构成甲酸氧化酶的主要成分,甲酸氧化酶活性是30多年前在需氧生长的大肠杆菌中首次发现的。