Chen Henian, Cohen Patricia
Epidemiology of Mental Disorders, New York State Psychiatric Institute, New York, NY, USA.
Health Qual Life Outcomes. 2006 Feb 21;4:10. doi: 10.1186/1477-7525-4-10.
The individual growth model is a relatively new statistical technique now widely used to examine the unique trajectories of individuals and groups in repeated measures data. This technique is increasingly used to analyze the changes over time in quality of life (QOL) data. This study examines the change from adolescence to adulthood in physical health as an aspect of QOL as an illustration of the use of this analytic method.
Employing data from the Children in the Community (CIC) study, a prospective longitudinal investigation, physical health was assessed at mean ages 16, 22, and 33 in 752 persons born between 1965 and 1975.
The analyses using individual growth models show a linear decline in average physical health from age 10 to age 40. Males reported better physical health and declined less per year on average. Time-varying psychiatric disorders accounted for 8.6% of the explained variation in mean physical health, and 6.7% of the explained variation in linear change in physical health. Those with such a disorder reported lower mean physical health and a more rapid decline with age than those without a current psychiatric disorder. The use of SAS PROC MIXED, including syntax and interpretation of output are provided. Applications of these models including statistical assumptions, centering issues and cohort effects are discussed.
This paper highlights the usefulness of the individual growth model in modeling longitudinal change in QOL variables.
个体生长模型是一种相对较新的统计技术,目前广泛用于检验重复测量数据中个体和群体的独特轨迹。该技术越来越多地用于分析生活质量(QOL)数据随时间的变化。本研究以生活质量的一个方面——身体健康为例,考察从青春期到成年期的变化,以说明这种分析方法的应用。
利用社区儿童(CIC)研究的数据,这是一项前瞻性纵向调查,对1965年至1975年出生的752人在平均年龄16岁、22岁和33岁时的身体健康状况进行了评估。
使用个体生长模型的分析表明,从10岁到40岁,平均身体健康呈线性下降。男性报告的身体健康状况较好,平均每年下降较少。随时间变化的精神障碍占平均身体健康状况解释变异的8.6%,占身体健康线性变化解释变异的6.7%。患有此类障碍的人报告的平均身体健康状况低于没有当前精神障碍的人,且随年龄增长下降更快。提供了SAS PROC MIXED的使用方法,包括语法和输出解释。讨论了这些模型的应用,包括统计假设、中心化问题和队列效应。
本文强调了个体生长模型在模拟生活质量变量纵向变化方面的有用性。