Braga Dario, Giaffreda Stefano L, Grepioni Fabrizia, Pettersen Anna, Maini Lucia, Curzi Marco, Polito Marco
Dipartimento di Chimica G. Ciamician, Università degli Studi di Bologna, Via F. Selmi 2, 40126, Bologna, Italy.
Dalton Trans. 2006 Mar 14(10):1249-63. doi: 10.1039/b516165g. Epub 2006 Feb 10.
This Dalton Perspective deals with solvent-free reactions taking place within solids or between solids or involving a solid and a vapour. The focus is on reactions involving organometallic and coordination compounds and occurring via reassembling of non-covalent bonding, e.g. hydrogen bonds, and/or formation of ligand-metal coordination bonds. It is argued that reactions activated by mechanical mixing of solid reactants as well as those obtained by exposing a crystalline solid to a vapour can be exploited to "make crystals", which is the quintessence of crystal engineering. It is demonstrated through a number of examples that solvent-free methods, such as co-grinding, kneading, milling of molecular solids, or reactions of solid with vapours represent viable alternative, when not unique, routes for the preparation of novel molecular and supramolecular solids as well as for the preparation of polymorphic or solvate modifications of a same species. The structural characterization of the products requires the preparation of single crystals suitable for X-ray diffraction, a goal often achieved by seeding.
本期《道尔顿视角》探讨了在固体内部、固体之间或涉及固体与蒸汽的无溶剂反应。重点关注涉及有机金属和配位化合物的反应,这些反应通过非共价键(如氢键)的重新组装和/或配体 - 金属配位键的形成而发生。有人认为,通过固体反应物的机械混合激活的反应以及通过将晶体固体暴露于蒸汽中获得的反应可用于“制造晶体”,这是晶体工程的精髓。通过多个例子表明,无溶剂方法,如共研磨、捏合、分子固体的研磨,或固体与蒸汽的反应,即使不是唯一的,也是制备新型分子和超分子固体以及制备同一物种的多晶型或溶剂化物变体的可行替代途径。产物的结构表征需要制备适合X射线衍射的单晶,这一目标通常通过晶种接种来实现。