Horn Peter J, Peterson Craig L
Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St., Biotech 2, Suite 210, Worcester, 01605, USA.
Chromosome Res. 2006;14(1):83-94. doi: 10.1007/s10577-005-1018-1.
The organization of eukaryotic genomes requires a harmony between efficient compaction and accessibility. This is achieved through its packaging into chromatin. Chromatin can be subdivided into two general structural and functional compartments: euchromatin and heterochromatin. Euchromatin comprises most of the expressed genome, while heterochromatin participates intimately in the production of structures such as centromeres and telomeres essential for chromosome function. Studies in the fission yeast Schizosaccharomyces pombe have begun to highlight the genetic pathways critical for the assembly and epigenetic maintenance of heterochromatin, including key roles played by the RNAi machinery, H3 lysine 9 methylation and heterochromatin protein 1 (HP1). Recent studies have also identified a novel E3 ubiquitin ligase universally required for H3 K9 methylation. Here we outline these studies and propose several models for the role of this E3 ligase in heterochromatin assembly.
真核生物基因组的组织需要在高效压缩和可及性之间达成平衡。这是通过将其包装成染色质来实现的。染色质可细分为两个一般的结构和功能区室:常染色质和异染色质。常染色质包含大部分已表达的基因组,而异染色质则密切参与着诸如对染色体功能至关重要的着丝粒和端粒等结构的产生。对裂殖酵母粟酒裂殖酵母的研究已开始凸显出对异染色质组装和表观遗传维持至关重要的遗传途径,包括RNA干扰机制、H3赖氨酸9甲基化和异染色质蛋白1(HP1)所起的关键作用。最近的研究还鉴定出一种H3 K9甲基化普遍所需的新型E3泛素连接酶。在此,我们概述这些研究,并提出该E3连接酶在异染色质组装中作用的几种模型。