Slawson Elizabeth E, Shaffer Christopher D, Malone Colin D, Leung Wilson, Kellmann Elmer, Shevchek Rachel B, Craig Carolyn A, Bloom Seth M, Bogenpohl James, Dee James, Morimoto Emiko T A, Myoung Jenny, Nett Andrew S, Ozsolak Fatih, Tittiger Mindy E, Zeug Andrea, Pardue Mary-Lou, Buhler Jeremy, Mardis Elaine R, Elgin Sarah C R
Biology Department, Washington University, St Louis, MO 63130, USA.
Genome Biol. 2006;7(2):R15. doi: 10.1186/gb-2006-7-2-r15. Epub 2006 Feb 20.
Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.
Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).
Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.
果蝇的四号染色体,即所谓的点状染色体,大部分是异染色质,这通过用异染色质蛋白1(HP1)和组蛋白H3K9me的抗体进行免疫荧光染色得以显示。相比之下,在 virilis果蝇的点状染色体中缺乏HP1和H3K9me,这表明该区域是常染色质。virilis果蝇与黑腹果蝇在4000万至6000万年前分化。
在此我们描述了与virilis果蝇点状染色体杂交的11个黏粒(372,650个碱基对)以及来自主要常染色质染色体臂的7个黏粒(273,110个碱基对)的完成测序和分析。黑腹果蝇点状染色体上的大多数基因在virilis果蝇中仍保留在点状染色体上,但发生了许多倒位。两个物种的点状染色体在基因密度和编码密度上与主要染色体臂相似,但两个物种的点状染色体基因具有更大的内含子。virilis果蝇点状染色体黏粒具有高重复密度(22.8%),类似于黑腹果蝇的同源区域(26.5%)。然而,在重复元件的表现上存在主要差异。DNA转座子的残余仅占virilis果蝇点状染色体黏粒的6.3%,但占黑腹果蝇同源区域的18.4%;DINE-1和1360元件在黑腹果蝇中特别富集。两个物种主要染色体上的常染色质结构域具有非常少的DNA转座子(小于0.4%)。
将这些结果与关于RNAi的最新发现相结合,我们认为特定的重复元件以及密度在决定高阶染色质包装中起作用。