Suppr超能文献

对黑腹果蝇和拟果蝇的点状染色体序列进行比较,结果显示异染色质区域中DNA转座子序列有所富集。

Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains.

作者信息

Slawson Elizabeth E, Shaffer Christopher D, Malone Colin D, Leung Wilson, Kellmann Elmer, Shevchek Rachel B, Craig Carolyn A, Bloom Seth M, Bogenpohl James, Dee James, Morimoto Emiko T A, Myoung Jenny, Nett Andrew S, Ozsolak Fatih, Tittiger Mindy E, Zeug Andrea, Pardue Mary-Lou, Buhler Jeremy, Mardis Elaine R, Elgin Sarah C R

机构信息

Biology Department, Washington University, St Louis, MO 63130, USA.

出版信息

Genome Biol. 2006;7(2):R15. doi: 10.1186/gb-2006-7-2-r15. Epub 2006 Feb 20.

Abstract

BACKGROUND

Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.

RESULTS

Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).

CONCLUSION

Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.

摘要

背景

果蝇的四号染色体,即所谓的点状染色体,大部分是异染色质,这通过用异染色质蛋白1(HP1)和组蛋白H3K9me的抗体进行免疫荧光染色得以显示。相比之下,在 virilis果蝇的点状染色体中缺乏HP1和H3K9me,这表明该区域是常染色质。virilis果蝇与黑腹果蝇在4000万至6000万年前分化。

结果

在此我们描述了与virilis果蝇点状染色体杂交的11个黏粒(372,650个碱基对)以及来自主要常染色质染色体臂的7个黏粒(273,110个碱基对)的完成测序和分析。黑腹果蝇点状染色体上的大多数基因在virilis果蝇中仍保留在点状染色体上,但发生了许多倒位。两个物种的点状染色体在基因密度和编码密度上与主要染色体臂相似,但两个物种的点状染色体基因具有更大的内含子。virilis果蝇点状染色体黏粒具有高重复密度(22.8%),类似于黑腹果蝇的同源区域(26.5%)。然而,在重复元件的表现上存在主要差异。DNA转座子的残余仅占virilis果蝇点状染色体黏粒的6.3%,但占黑腹果蝇同源区域的18.4%;DINE-1和1360元件在黑腹果蝇中特别富集。两个物种主要染色体上的常染色质结构域具有非常少的DNA转座子(小于0.4%)。

结论

将这些结果与关于RNAi的最新发现相结合,我们认为特定的重复元件以及密度在决定高阶染色质包装中起作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4de/1431729/1952bdfac4a8/gb-2006-7-2-r15-1.jpg

相似文献

5
The Release 5.1 annotation of Drosophila melanogaster heterochromatin.
Science. 2007 Jun 15;316(5831):1586-91. doi: 10.1126/science.1139815.
6
cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four.
Mol Cell Biol. 2004 Sep;24(18):8210-20. doi: 10.1128/MCB.24.18.8210-8220.2004.
7
Evolution of heterochromatic genes of Drosophila.
Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10958-63. doi: 10.1073/pnas.0503424102. Epub 2005 Jul 20.
8
Evolutionary Dynamics of the Pericentromeric Heterochromatin in and Related Species.
Genes (Basel). 2021 Jan 27;12(2):175. doi: 10.3390/genes12020175.
10

引用本文的文献

1
Accessible support at a national scale: the use and value of virtual learning assistants across multiple undergraduate institutions.
J Microbiol Biol Educ. 2025 Apr 24;26(1):e0017024. doi: 10.1128/jmbe.00170-24. Epub 2025 Feb 11.
2
Manual annotation of genes: a Genomics Education Partnership protocol.
F1000Res. 2023 Oct 13;11:1579. doi: 10.12688/f1000research.126839.3. eCollection 2022.
3
Microbiomes for All.
Front Microbiol. 2020 Nov 12;11:593472. doi: 10.3389/fmicb.2020.593472. eCollection 2020.
4
Molecular and genetic organization of bands and interbands in the dot chromosome of Drosophila melanogaster.
Chromosoma. 2019 Jun;128(2):97-117. doi: 10.1007/s00412-019-00703-x. Epub 2019 Apr 30.
5
The Dot Chromosome: Where Genes Flourish Amidst Repeats.
Genetics. 2018 Nov;210(3):757-772. doi: 10.1534/genetics.118.301146.
6
Pathways over Time: Functional Genomics Research in an Introductory Laboratory Course.
CBE Life Sci Educ. 2018 Spring;17(1). doi: 10.1187/cbe.17-01-0012.
7
Retrotransposons Are the Major Contributors to the Expansion of the Muller F Element.
G3 (Bethesda). 2017 Aug 7;7(8):2439-2460. doi: 10.1534/g3.117.040907.
8
The absence of crossovers on chromosome 4 in Drosophila melanogaster: Imperfection or interesting exception?
Fly (Austin). 2017 Oct 2;11(4):253-259. doi: 10.1080/19336934.2017.1321181. Epub 2017 Apr 20.
9
Hawaiian Drosophila genomes: size variation and evolutionary expansions.
Genetica. 2016 Feb;144(1):107-24. doi: 10.1007/s10709-016-9882-5. Epub 2016 Jan 20.

本文引用的文献

1
The Homologies of the Chromosome Elements in the Genus Drosophila.
Genetics. 1941 Sep;26(5):517-41. doi: 10.1093/genetics/26.5.517.
2
Mutants and Crossing over in the Dot-like Chromosome of DROSOPHILA VIRILIS.
Genetics. 1933 Mar;18(2):111-6. doi: 10.1093/genetics/18.2.111.
4
Analyzing heterochromatin formation using chromosome 4 of Drosophila melanogaster.
Cold Spring Harb Symp Quant Biol. 2004;69:267-72. doi: 10.1101/sqb.2004.69.267.
5
Combined evidence annotation of transposable elements in genome sequences.
PLoS Comput Biol. 2005 Jul;1(2):166-75. doi: 10.1371/journal.pcbi.0010022. Epub 2005 Jul 29.
6
De novo identification of repeat families in large genomes.
Bioinformatics. 2005 Jun;21 Suppl 1:i351-8. doi: 10.1093/bioinformatics/bti1018.
7
PILER: identification and classification of genomic repeats.
Bioinformatics. 2005 Jun;21 Suppl 1:i152-8. doi: 10.1093/bioinformatics/bti1003.
8
Mammalian microRNAs derived from genomic repeats.
Trends Genet. 2005 Jun;21(6):322-6. doi: 10.1016/j.tig.2005.04.008.
10
RNAi-mediated pathways in the nucleus.
Nat Rev Genet. 2005 Jan;6(1):24-35. doi: 10.1038/nrg1500.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验