Pradines Bruno, Pagès Jean-Marie, Barbe Jacques
Unité de Recherche en Biologie et Epidemiologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France.
Curr Drug Targets Infect Disord. 2005 Dec;5(4):411-31. doi: 10.2174/156800505774912875.
The emergence and spread of antiparasitic drug resistance pose a severe and increasing public health threat. Failures in prophylaxis or those in treatment with quinolines, hydroxynaphtoquinones, sesquiterpenic lactones, antifolate drugs, arsenic and antimony containing drugs sulfamides induce reemergence of parasitic-related morbidity and mortality. Resistance is often associated with alteration of drug accumulation into parasites, which results from a reduced uptake of the drug, an increased efflux or, a combination of the two processes. Resistance to quinolines, artemisinin derivatives and arsenicals and expression of an active efflux mechanism are more or less correlated in protozoa like Plasmodium spp., Leishmania spp., and Trypanosoma spp. Various parasite candidate genes have been proposed to be involved in drug resistance, each concerned in membrane transport. Genes encoding membrane glycoproteins, orthologue to the P-glycoproteins identified in MDR human cancer cells, have been described in these resistant pathogens in addition to various membrane proteins involved in drug transport. Several compounds have demonstrated, in the past decade, promising capability to reverse the drug resistance in parasite isolates in vitro, in animal models and for human malaria. These drugs belong to different pharmacological classes such as calcium channel blockers, tricyclic antidepressants, antipsychotic calmodulin antagonists, histamine H1-receptor antagonists, analgesic antipyretic drugs, non-steroidal anti-inflammatory drugs, and to different chemical classes such as synthetic surfactants, alkaloids from plants used in traditional medicine, pyrrolidinoaminoalkanes and derivatives, and anthracene derivatives. Here, are summarized the molecular bases of antiparasitic resistance emphasizing recent developments with compounds acting on trans-membrane proteins involved in drug efflux or uptake.
抗寄生虫药物耐药性的出现和传播对公众健康构成了严重且日益增加的威胁。预防失败或使用喹啉、羟基萘醌、倍半萜内酯、抗叶酸药物、含砷和锑的药物、磺胺类药物治疗失败会导致寄生虫相关发病率和死亡率再度出现。耐药性通常与药物在寄生虫体内蓄积的改变有关,这是由于药物摄取减少、外排增加或这两个过程共同作用的结果。在疟原虫属、利什曼原虫属和锥虫属等原生动物中,对喹啉、青蒿素衍生物和砷剂的耐药性与主动外排机制的表达或多或少相关。已提出多种寄生虫候选基因与耐药性有关,每个基因都与膜转运有关。除了参与药物转运的各种膜蛋白外,在这些耐药病原体中还描述了编码膜糖蛋白的基因,这些膜糖蛋白与在多药耐药人类癌细胞中鉴定出的P-糖蛋白是直系同源物。在过去十年中,几种化合物已在体外寄生虫分离株、动物模型和人类疟疾中显示出有希望逆转耐药性的能力。这些药物属于不同药理学类别,如钙通道阻滞剂、三环类抗抑郁药、抗精神病钙调蛋白拮抗剂、组胺H1受体拮抗剂、解热镇痛药、非甾体抗炎药,并且属于不同化学类别,如合成表面活性剂、传统医学中使用植物的生物碱、吡咯烷基氨基烷烃及其衍生物以及蒽衍生物。在此,总结了抗寄生虫耐药性的分子基础,重点介绍了作用于参与药物外排或摄取的跨膜蛋白的化合物的最新进展。