Xu Ning-long, Ye Chang-quan, Poo Mu-ming, Zhang Xiao-hui
Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200031, China.
J Neurosci. 2006 Mar 15;26(11):3002-9. doi: 10.1523/JNEUROSCI.5220-05.2006.
Two major aspects of dendritic integration, coincidence detection and temporal integration, depend critically on the spatial and temporal properties of the dendritic summation of synaptic inputs. Neuronal activity capable of inducing synaptic long-term potentiation (LTP) leads to increased linearity of the spatial summation of synchronous EPSPs. Whether such activity can also modulate the temporal summation of EPSPs is unknown. In the present study, we examined the linearity of the summation of EPSPs spaced by different time intervals in hippocampal CA1 pyramidal neurons, before and after LTP induction. We found that LTP induction resulted in an increased linearity of summation of the potentiated input with another synchronous or asynchronous input, with a striking dendritic location-specific selectivity for the timing of the summed inputs. At distal dendrites, LTP induction led to an increased linearity of summation only for EPSPs arriving within 5 ms, thus favoring the summation of coincident inputs. In contrast, LTP induction at proximal dendrites increased the linearity of summation for EPSPs arriving within a time window of >20 ms. Furthermore, for synaptic inputs at the distal dendrite, enhanced spiking output after LTP induction was observed only for coincidently summed EPSPs, suggesting facilitated coincidence detection. In contrast, for proximal inputs, enhanced spiking output after LTP induction occurred for EPSPs arriving within a broader time window of approximately 20 ms, favoring temporal integration. Such dendritic location-dependent differential modulation of coincidence detection and temporal integration by neuronal activity represents a form of activity-dependent and domain-specific plasticity in the function of dendritic information processing.
树突整合的两个主要方面,即重合检测和时间整合,严重依赖于突触输入的树突总和的空间和时间特性。能够诱导突触长时程增强(LTP)的神经元活动会导致同步兴奋性突触后电位(EPSP)空间总和的线性增加。这种活动是否也能调节EPSP的时间总和尚不清楚。在本研究中,我们在诱导LTP之前和之后,检查了海马CA1锥体神经元中由不同时间间隔隔开的EPSP总和的线性。我们发现,诱导LTP导致增强的输入与另一个同步或异步输入总和的线性增加,对于总和输入的时间具有显著的树突位置特异性选择性。在远端树突,诱导LTP仅导致在5毫秒内到达的EPSP总和的线性增加,因此有利于重合输入的总和。相比之下,近端树突处的LTP诱导增加了在>20毫秒时间窗口内到达的EPSP总和的线性。此外,对于远端树突处的突触输入,仅在重合总和的EPSP后观察到诱导LTP后增强的放电输出,表明重合检测得到促进。相比之下,对于近端输入,诱导LTP后增强的放电输出发生在大约20毫秒的更宽时间窗口内到达的EPSP,有利于时间整合。神经元活动对重合检测和时间整合的这种树突位置依赖性差异调节代表了树突信息处理功能中一种活动依赖性和区域特异性可塑性的形式。