Dynamics and Pathophysiology of Neuronal Networks (Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche en Santé 667), Center for Interdisciplinary Research in Biology, Collège de France Paris, France.
Front Synaptic Neurosci. 2010 Jun 10;2:6. doi: 10.3389/fnsyn.2010.00006. eCollection 2010.
The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs), are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP) occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, NO-synthase and cholinergic interneurons) also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.
纹状体是基底神经节的主要输入核团,基底神经节是一组相互连接的皮质下核团,与动作选择、程序学习和记忆的基本过程有关。纹状体接收来自大脑皮层和丘脑的传入。反过来,它通过基底神经节输出核团将整合的信息传递出去,通过这些核团对行为效应器进行选择性激活。纹状体的输出神经元,即 GABA 能中型棘突神经元(MSN),负责检测和整合与行为相关的信息。这种特性使纹状体能够从背景噪声中提取相关信息,并选择适应环境刺激的认知运动序列。由于长期突触效能的变化被认为是学习和记忆的基础,皮质纹状体的长期可塑性为基底神经节在程序学习中的功能提供了一个基本机制。在这里,我们回顾了发生在皮质纹状体突触上的不同形式的尖峰时间依赖可塑性(STDP)。大多数研究都集中在 MSN 及其发展长期可塑性的能力上。然而,纹状体中间神经元(快速放电 GABA 能、NO 合酶和胆碱能中间神经元)也从皮层接收单突触传入,并对皮质纹状体信息处理进行紧密调节。因此,考虑到纹状体神经元的多样性对于充分理解纹状体发展长期可塑性的能力非常重要。根据神经元亚群和实验条件的不同,已经观察到具有各种尖峰时间依赖性的皮质纹状体 STDP。这种复杂性突出了皮质纹状体通路在可塑性方面的非凡潜力。