Bernstein Steven L, Koo Jae Hyung, Slater Bernard J, Guo Yan, Margolis Frank L
Department of Ophthalmology, School of Medicine, University of Maryland-Baltimore, MD 21201, USA.
Mol Vis. 2006 Mar 1;12:147-55.
Few proteins are known to be selectively expressed in retinal ganglion cells (RGCs), the neurons directly affected by optic nerve stroke and glaucoma. In addition, subsets of RGCs are reported to project to various CNS areas via the retinohypothalamic pathway in rodents and primates. Many of these areas exhibit immunoreactivity for the brain-expressed X-linked (Bex) proteins Bex1 and Bex2. This prompted us to evaluate expression of these proteins in retina.
We utilized rats and transgenic mice, coupled with a new rodent model of isolated optic nerve stroke (rodent anterior ischemic optic neuropathy, rAION). An anti-Bex1 antibody was reacted to retinal tissue extracts. To evaluate short term effects of rAION on RGC Bex expression, a double transgenic mouse strain was employed expressing cyan fluorescent protein (CFP) under control of the Thy-1 protein promotor, and beta-galactosidase (lacZ) under control of the immediate early stress c-fos gene promotor. Positive identification of rat RGCs was performed by retrograde fluorogold labeling via stereotactic CNS injection. Retinas were analyzed using both diaminobenzidine (DAB)-linked immunochemistry and confocal microscopy.
Bex immunoreactivity is present at high levels in the retina. Bex1 and Bex2 are selectively expressed in RGCs and differentially expressed in a subset of large RGC neurons. Bex signal levels are lower in small RGC neurons, which preferentially express high levels of the transcription factor Brn3b. Post-stroke, Bex accumulates in the RGC cytoplasm, consistent with the optic nerve edema produced by clinical AION.
Bex immunoreactivity can be used to evaluate, ex vivo, the distribution of RGC cell bodies and their axons in the retina and rAION effects on RGC axonal loss. Thus, Bex can be utilized to evaluate both long- and short-term effects of optic nerve stroke and may play a significant role in regulating RGC functions in both the axonal and cell body components of RGC neurons.
已知在视网膜神经节细胞(RGCs)中选择性表达的蛋白质很少,而RGCs是直接受视神经中风和青光眼影响的神经元。此外,据报道,在啮齿动物和灵长类动物中,RGCs的亚群通过视网膜下丘脑通路投射到各种中枢神经系统区域。这些区域中的许多对脑表达的X连锁(Bex)蛋白Bex1和Bex2表现出免疫反应性。这促使我们评估这些蛋白在视网膜中的表达。
我们利用大鼠和转基因小鼠,结合一种新的孤立性视神经中风的啮齿动物模型(啮齿动物前部缺血性视神经病变,rAION)。将抗Bex1抗体与视网膜组织提取物反应。为了评估rAION对RGC Bex表达的短期影响,使用了一种双转基因小鼠品系,该品系在Thy-1蛋白启动子的控制下表达青色荧光蛋白(CFP),在即刻早期应激c-fos基因启动子的控制下表达β-半乳糖苷酶(lacZ)。通过立体定向中枢神经系统注射逆行荧光金标记对大鼠RGCs进行阳性鉴定。使用二氨基联苯胺(DAB)连接的免疫化学和共聚焦显微镜对视网膜进行分析。
Bex免疫反应性在视网膜中高水平存在。Bex1和Bex2在RGCs中选择性表达,并在一部分大RGC神经元中差异表达。小RGC神经元中的Bex信号水平较低,这些小RGC神经元优先高水平表达转录因子Brn3b。中风后,Bex在RGC细胞质中积累,这与临床AION产生的视神经水肿一致。
Bex免疫反应性可用于在体外评估视网膜中RGC细胞体及其轴突的分布以及rAION对RGC轴突损失的影响。因此,Bex可用于评估视神经中风的长期和短期影响,并可能在调节RGC神经元的轴突和细胞体成分中的RGC功能方面发挥重要作用。