Chen Han, Chen Enguang, Cao Ting, Feng Feifan, Lin Min, Wang Xuan, Xu Yu
Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Front Immunol. 2024 Dec 4;15:1486251. doi: 10.3389/fimmu.2024.1486251. eCollection 2024.
Diabetic retinopathy (DR) is a major complication of diabetes, leading to severe vision impairment. Understanding the molecular mechanisms, particularly PANoptosis, underlying DR is crucial for identifying potential biomarkers and therapeutic targets. This study aims to identify differentially expressed PANoptosis-related genes (DE-PRGs) in DR, offering insights into the disease's pathogenesis and potential diagnostic tools.
DR datasets were obtained from the Gene Expression Omnibus (GEO) database, while PANoptosis-related genes were sourced from the GeneCards database. Differentially expressed genes (DEGs) were identified using the DESeq2 package, followed by functional enrichment analysis through DAVID and Metascape tools. Three machine learning algorithms-LASSO regression, Random Forest, and SVM-RFE-were employed to identify hub genes. A diagnostic nomogram was constructed and its performance assessed via ROC analysis. The CIBERSORT algorithm analyzed immune cell infiltration. Hub genes were validated through RT-qPCR, Western blotting, immunohistochemistry, and publicly available datasets. Additionally, the impact of FASN and PLSCR3 knockdown on HUVECs behavior was validated through experiments.
Differential expression analysis identified 1,418 DEGs in the GSE221521 dataset, with 39 overlapping DE-PRGs (29 upregulated, 10 downregulated). Functional enrichment indicated that DE-PRGs are involved in apoptosis, signal transduction, and inflammatory responses, with key pathways such as MAPK and TNF signaling. Machine learning algorithms identified six PANoptosis-related hub genes (BEX2, CASP2, CD36, FASN, OSMR, and PLSCR3) as potential biomarkers. A diagnostic nomogram based on these hub genes showed high diagnostic accuracy. Immune cell infiltration analysis revealed significant differences in immune cell patterns between control and DR groups, especially in Activated CD4 Memory T Cells and Monocytes. Validation confirmed the diagnostic efficiency and expression patterns of the PANoptosis-related hub genes, supported by and the GSE60436 dataset analysis. Furthermore, experiments demonstrated that knocking down FASN and PLSCR3 impacted HUVECs behavior.
This study provides valuable insights into the molecular mechanisms of DR, particularly highlighting PANoptosis-related pathways, and identifies potential biomarkers and therapeutic targets for the disease.
糖尿病视网膜病变(DR)是糖尿病的一种主要并发症,可导致严重的视力损害。了解DR潜在的分子机制,尤其是PANoptosis,对于识别潜在的生物标志物和治疗靶点至关重要。本研究旨在识别DR中差异表达的PANoptosis相关基因(DE-PRGs),为该疾病的发病机制和潜在诊断工具提供见解。
从基因表达综合数据库(GEO)获取DR数据集,从基因卡片数据库获取PANoptosis相关基因。使用DESeq2软件包识别差异表达基因(DEGs),随后通过DAVID和Metascape工具进行功能富集分析。采用三种机器学习算法——套索回归、随机森林和支持向量机递归特征消除(SVM-RFE)来识别枢纽基因。构建诊断列线图并通过ROC分析评估其性能。使用CIBERSORT算法分析免疫细胞浸润。通过RT-qPCR、蛋白质免疫印迹、免疫组织化学和公开可用数据集验证枢纽基因。此外,通过实验验证了脂肪酸合酶(FASN)和磷脂爬行酶3(PLSCR3)敲低对人脐静脉内皮细胞(HUVECs)行为的影响。
差异表达分析在GSE221521数据集中识别出1418个DEGs,其中有39个重叠的DE-PRGs(29个上调,10个下调)。功能富集表明,DE-PRGs参与细胞凋亡、信号转导和炎症反应,涉及丝裂原活化蛋白激酶(MAPK)和肿瘤坏死因子(TNF)信号等关键通路。机器学习算法识别出六个PANoptosis相关枢纽基因(脑表达X连锁蛋白2(BEX2)、半胱天冬酶2(CASP2)、分化簇36(CD36)、FASN、抑瘤素M受体(OSMR)和PLSCR3)作为潜在生物标志物。基于这些枢纽基因的诊断列线图显示出较高的诊断准确性。免疫细胞浸润分析显示,对照组和DR组之间的免疫细胞模式存在显著差异,尤其是在活化的CD4记忆T细胞和单核细胞方面。验证证实了PANoptosis相关枢纽基因的诊断效率和表达模式,得到了和GSE60436数据集分析的支持。此外,实验表明敲低FASN和PLSCR3会影响HUVECs行为。
本研究为DR的分子机制提供了有价值的见解,尤其突出了与PANoptosis相关的通路,并识别出该疾病的潜在生物标志物和治疗靶点。