Kuang Daibin, Ito Seigo, Wenger Bernard, Klein Cedric, Moser Jacques-E, Humphry-Baker Robin, Zakeeruddin Shaik M, Grätzel Michael
Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
J Am Chem Soc. 2006 Mar 29;128(12):4146-54. doi: 10.1021/ja058540p.
Two novel heteroleptic sensitizers, Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2-bipyridine)(NCS)2 and Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-methoxystyryl)-2,2'-bipyridine) (NCS)2, coded as K-19 and K-73, respectively, have been synthesized and characterized by 1H NMR, FTIR, UV-vis absorption, and emission spectroscopy and excited-state lifetime and spectroelectrochemical measurements. The introduction of the alkoxystyryl group extends the conjugation of the bipyridine donor ligand increasing markedly their molar extinction coefficient and solar light harvesting capacity. The dynamics of photoinduced charge separation following electronic excitation of the K-19 dye was scrutinized by time-resolved laser spectroscopy. The electron transfer from K-19 to the conduction band of TiO2 is completed within 20 fs while charge recombination has a half-life time of 800 s. The high extinction coefficients of these sensitizers enable realization of a new generation of a thin film dye sensitized solar cell (DSC) yielding high conversion efficiency at full sunlight even with viscous electrolytes based on ionic liquids or nonvolatile solvents. An unprecedented yield of over 9% was obtained under standard reporting conditions (simulated global air mass 1.5 sunlight at 1000 W/m2 intensity) when the K-73 sensitizer was combined with a nonvolatile "robust" electrolyte. The K-19 dye gave a conversion yield of 7.1% when used in conjunction with the binary ionic liquid electrolyte. These devices exhibit excellent stability under light soaking at 60 degrees C. The effect of the mesoscopic TiO2 film thickness on photovoltaic performance has been analyzed by electrochemical impedance spectroscopy (EIS).
合成了两种新型异质配体敏化剂,分别为Ru((4,4 - 二羧酸 - 2,2'-联吡啶)(4,4'-双(对己氧基苯乙烯基)-2,2 - 联吡啶)(NCS)2和Ru((4,4 - 二羧酸 - 2,2'-联吡啶)(4,4'-双(对甲氧基苯乙烯基)-2,2'-联吡啶)(NCS)2,分别编码为K - 19和K - 73,并通过1H NMR、FTIR、紫外 - 可见吸收光谱、发射光谱以及激发态寿命和光谱电化学测量对其进行了表征。烷氧基苯乙烯基的引入扩展了联吡啶供体配体的共轭,显著提高了它们的摩尔消光系数和太阳光捕获能力。通过时间分辨激光光谱研究了K - 19染料电子激发后光诱导电荷分离的动力学。从K - 19到TiO2导带的电子转移在20 fs内完成,而电荷复合的半衰期为800 s。这些敏化剂的高消光系数使得能够实现新一代薄膜染料敏化太阳能电池(DSC),即使使用基于离子液体或非挥发性溶剂的粘性电解质,在全阳光下也能产生高转换效率。当K - 73敏化剂与非挥发性“稳健”电解质结合时,在标准报告条件下(模拟全球空气质量1.5太阳光,强度为1000 W/m2)获得了超过9%的前所未有的产率。当与二元离子液体电解质一起使用时,K - 19染料的转换产率为7.1%。这些器件在60℃光照下表现出优异的稳定性。通过电化学阻抗谱(EIS)分析了介观TiO2膜厚度对光伏性能的影响。