Carcy Bernard, Précigout Eric, Schetters Theo, Gorenflot André
Laboratoire de Biologie Cellulaire et Moléculaire, EA MESR 2413, ERT 1038 Vaccination antiparasitaire, UFR des Sciences Pharmaceutiques et Biologiques, BP 14491, F-34093 Montpellier Cedex 5, France.
Vet Parasitol. 2006 May 31;138(1-2):33-49. doi: 10.1016/j.vetpar.2006.01.038. Epub 2006 Mar 23.
Glycosyl-phosphatidylinositol anchor merozoite surface antigens (GPI-anchor MSA) are proposed to act in the invasion process of infective merozoites of Babesia into host erythrocytes. Because of their essential function in the survival of Babesia parasites, they constitute good candidates for the development of vaccines against babesiosis and they have been extensively analyzed. These include Babesia bovis variable MSA (VMSA) and Babesia bigemina gp45/gp55 proteins of the agents of bovine babesiosis from tropical and subtropical countries, and the Babesia divergens Bd37 and Babesia canis Bc28 proteins of the main agents of bovine and canine babesiosis in Europe, respectively. However, these are very polymorphic antigens and Babesia parasites have evolved molecular mechanisms that enable these antigens to evade the host immune system as a survival strategy. This review focuses on the genetic basis of GPI-anchor MSA polymorphism and the antigenic diversity of B-cell epitopes that might be generated in each of these Babesia species. The picture is incomplete and no Babesia genome sequence is yet available. However, the available sequences suggest that two distinct, non cross-reactive GPI-anchor MSA (i.e., with unique B-cell epitopes) may be required by all Babesia species for invasion, and that these two distinct GPI-anchor MSA would be encoded by a multigene family. Furthermore, the data are consistent with the ability of biological clones from Babesia to use these multigene families for the expression of GPI-anchor MSA, either conserved (B. canis and B. bovis) or polymorphic (B. divergens and B. bigemina) in their amino acid sequence. Moreover, as a consequence for successful parasitism, the data suggest that both conserved and polymorphic GPI-anchor MSA would present unique B-cell epitopes.
糖基磷脂酰肌醇锚定裂殖子表面抗原(GPI锚定MSA)被认为在巴贝斯虫感染性裂殖子侵入宿主红细胞的过程中发挥作用。由于它们在巴贝斯虫寄生虫生存中具有重要功能,因此它们是开发抗巴贝斯虫病疫苗的良好候选对象,并已得到广泛分析。这些抗原包括来自热带和亚热带国家的牛巴贝斯虫可变MSA(VMSA)以及牛巴贝斯虫病病原体的双芽巴贝斯虫gp45/gp55蛋白,以及欧洲牛和犬巴贝斯虫病主要病原体的分歧巴贝斯虫Bd37和犬巴贝斯虫Bc28蛋白。然而,这些都是高度多态性的抗原,并且巴贝斯虫寄生虫已经进化出分子机制,使这些抗原能够作为一种生存策略逃避宿主免疫系统。本综述重点关注GPI锚定MSA多态性的遗传基础以及可能在每种巴贝斯虫物种中产生的B细胞表位的抗原多样性。目前情况尚不完整,尚无巴贝斯虫基因组序列可用。然而,现有序列表明,所有巴贝斯虫物种入侵可能都需要两种不同的、无交叉反应的GPI锚定MSA(即具有独特的B细胞表位),并且这两种不同的GPI锚定MSA将由一个多基因家族编码。此外,数据与巴贝斯虫的生物克隆利用这些多基因家族表达GPI锚定MSA的能力一致,这些GPI锚定MSA在氨基酸序列上要么是保守的(犬巴贝斯虫和牛巴贝斯虫),要么是多态的(分歧巴贝斯虫和双芽巴贝斯虫)。此外,作为成功寄生的结果,数据表明保守和多态的GPI锚定MSA都将呈现独特的B细胞表位。