Suppr超能文献

动作电位速度的代谢能量消耗

Metabolic energy cost of action potential velocity.

作者信息

Crotty Patrick, Sangrey Thomas, Levy William B

机构信息

Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22908-0420, USA.

出版信息

J Neurophysiol. 2006 Sep;96(3):1237-46. doi: 10.1152/jn.01204.2005. Epub 2006 Mar 22.

Abstract

The action potential of the unmyelinated nerve is metabolically expensive. Using the energetic cost per unit length for the biophysically modeled action potential of the squid giant axon, we analyze this cost and identify one possible optimization. The energetic cost arising from an action potential is divided into three separate components: 1) the depolarization of the rising phase; 2) the hyperpolarization of the falling phase; and 3) the largest component, the overlapping of positive and negative currents, which has no electrical effect. Using both the Hodgkin-Huxley (HH) model and an improved version of the HH model (HHSFL), we investigate the variation of these three components as a function of easily evolvable parameters, axon diameter and ion channel densities. Assuming conduction velocity is well designed for each organism, the energy component associated with the rising phase attains a minimum near the biological values of the diameter and channel densities. This optimization is explained by the membrane capacitance per unit length. The functional capacitance is the sum of the intrinsic membrane capacitance and the gating capacitance associated with the sodium channel, and this capacitance minimizes at nearly the same values of diameter and channel density. Because capacitance is temperature independent and because this result is independent of the assumed velocity, the result generalizes to unmyelinated mammalian axons. That is, channel density is arguably an evolved property that goes hand-in-hand with the evolutionary stability of the sodium channel.

摘要

无髓神经的动作电位在代谢上成本高昂。利用鱿鱼巨大轴突生物物理模型化动作电位每单位长度的能量消耗,我们分析了这种成本并确定了一种可能的优化方式。动作电位产生的能量消耗分为三个独立部分:1)上升相的去极化;2)下降相的超极化;3)最大的部分,即正负电流的重叠,这部分没有电效应。我们使用霍奇金 - 赫胥黎(HH)模型和HH模型的改进版本(HHSFL),研究了这三个部分随易于演变的参数(轴突直径和离子通道密度)的变化情况。假设传导速度针对每种生物体都经过了良好设计,与上升相相关的能量部分在直径和通道密度接近生物学值时达到最小值。这种优化可以通过每单位长度的膜电容来解释。功能电容是固有膜电容和与钠通道相关的门控电容之和,并且这种电容在几乎相同的直径和通道密度值时最小化。由于电容与温度无关,并且由于这个结果与假设的速度无关,所以该结果适用于无髓哺乳动物轴突。也就是说,通道密度可以说是一种与钠通道的进化稳定性相伴而生的进化特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验