Bozhevolnyi Sergey I, Volkov Valentyn S, Devaux Eloïse, Laluet Jean-Yves, Ebbesen Thomas W
Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst, Denmark.
Nature. 2006 Mar 23;440(7083):508-11. doi: 10.1038/nature04594.
Photonic components are superior to electronic ones in terms of operational bandwidth, but the diffraction limit of light poses a significant challenge to the miniaturization and high-density integration of optical circuits. The main approach to circumvent this problem is to exploit the hybrid nature of surface plasmon polaritons (SPPs), which are light waves coupled to free electron oscillations in a metal that can be laterally confined below the diffraction limit using subwavelength metal structures. However, the simultaneous realization of strong confinement and a propagation loss sufficiently low for practical applications has long been out of reach. Channel SPP modes--channel plasmon polaritons (CPPs)--are electromagnetic waves that are bound to and propagate along the bottom of V-shaped grooves milled in a metal film. They are expected to exhibit useful subwavelength confinement, relatively low propagation loss, single-mode operation and efficient transmission around sharp bends. Our previous experiments showed that CPPs do exist and that they propagate over tens of micrometres along straight subwavelength grooves. Here we report the design, fabrication and characterization of CPP-based subwavelength waveguide components operating at telecom wavelengths: Y-splitters, Mach-Zehnder interferometers and waveguide-ring resonators. We demonstrate that CPP guides can indeed be used for large-angle bending and splitting of radiation, thereby enabling the realization of ultracompact plasmonic components and paving the way for a new class of integrated optical circuits.
光子元件在工作带宽方面优于电子元件,但光的衍射极限对光学电路的小型化和高密度集成构成了重大挑战。规避这一问题的主要方法是利用表面等离激元极化激元(SPP)的混合特性,SPP是与金属中自由电子振荡耦合的光波,可使用亚波长金属结构将其横向限制在衍射极限以下。然而,长期以来,同时实现强限制和足够低的传播损耗以用于实际应用一直无法实现。通道SPP模式——通道等离激元极化激元(CPP)——是束缚在金属薄膜中铣出的V形凹槽底部并沿其传播的电磁波。它们有望表现出有用的亚波长限制、相对较低的传播损耗、单模工作以及在尖锐弯曲处周围的高效传输。我们之前的实验表明CPP确实存在,并且它们沿着直的亚波长凹槽传播数十微米。在此,我们报告了工作在电信波长的基于CPP的亚波长波导元件的设计、制造和表征:Y型分路器、马赫-曾德尔干涉仪和波导环形谐振器。我们证明CPP波导确实可用于辐射的大角度弯曲和分路,从而实现超紧凑等离子体元件,并为新型集成光学电路铺平道路。