Hu Hanmin, Ji Boyu, Wang Lun, Lang Peng, Xu Yang, Zhao Zhenlong, Song Xiaowei, Lin Jingquan
School of Physics, Changchun University of Science and Technology, Changchun 130022, China.
College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China.
Nanophotonics. 2023 May 16;12(12):2121-2131. doi: 10.1515/nanoph-2023-0074. eCollection 2023 Jun.
Nondiffracting Bessel surface plasmon polariton (SPP) beams, which have unique self-healing, non-divergence, and linear transmission properties, have charming applications in plasmonic devices and on-chip interconnection circuits. Here we first realize, to the best of our knowledge, the ultrafast control and imaging of the Bessel SPP pulse on the nano-femto scale in the experiment. We demonstrate ultrafast control of Bessel SPP pulse switching by controlling the instantaneous polarization state of the excitation light. Moreover, this variation process is directly mapped on the nano-femto scale by time-resolved two-color photoemission electron microscopy. The results are well reproduced by the finite-difference time-domain (FDTD) method. The current study of ultrafast control and spatiotemporally imaging the switching process establishes an experimental paradigm for revealing the complex mechanisms in ultrafast control of nondiffracting SPP and are useful for developing high-speed, highly-integrated nanophotonic devices, and on-chip circuits.
无衍射贝塞尔表面等离激元极化激元(SPP)光束具有独特的自愈合、无发散和线性传输特性,在等离激元器件和片上互连电路中有着迷人的应用。据我们所知,在此我们首次在实验中实现了纳米飞秒尺度下贝塞尔SPP脉冲的超快控制和成像。我们通过控制激发光的瞬时偏振态来演示贝塞尔SPP脉冲开关的超快控制。此外,通过时间分辨双色光发射电子显微镜,这一变化过程直接在纳米飞秒尺度上被映射出来。有限时域差分(FDTD)方法很好地再现了这些结果。当前对超快控制以及开关过程的时空成像的研究,为揭示无衍射SPP超快控制中的复杂机制建立了一个实验范例,并且对于开发高速、高集成度的纳米光子器件和片上电路很有用。