Gilis Dimitri, Biot Christophe, Buisine Eric, Dehouck Yves, Rooman Marianne
Unité de Bioinformatique Génomique et Structurale, Université Libre de Bruxelles, CP 165/61, 50 Avenue F Roosevelt, 1050 Bruxelles, Belgiumance.
J Chem Inf Model. 2006 Mar-Apr;46(2):884-93. doi: 10.1021/ci050395b.
Novel statistical potentials derived from known protein structures are presented. They are designed to describe cation-pi and amino-pi interactions between a positively charged amino acid or an amino acid carrying a partially charged amino group and an aromatic moiety. These potentials are based on the propensity of residue types to be separated by a certain spatial distance or to have a given relative orientation. Several such potentials, describing different kinds of correlations between residue types, distances, and orientations, are derived and combined in a way that maximizes their information content and minimizes their redundancy. To test the ability of these potentials to describe cation-pi and amino-pi systems, we compare their energies with those computed with the CHARMM molecular mechanics force field and with quantum chemistry calculations at the Hartree-Fock level (HF) and at the second order of the Møller-Plesset perturbation theory (MP2). The latter calculations are performed in the gas phase and in acetone, in order to mimic the average dielectric constant of protein environments. The energies computed with the best of our statistical potentials and with gas-phase HF or MP2 show correlation coefficients up to 0.96 when considering one side-chain degree of freedom in the statistical potentials and up to 0.94 when using a totally simplified model excluding all side-chain degrees of freedom. These potentials perform as well as, or better than, the CHARMM molecular mechanics force field that uses a much more detailed protein representation. The good performance of our cation-pi statistical potentials suggests their utility in protein structure and stability prediction and in protein design.
本文提出了从已知蛋白质结构推导出来的新型统计势。它们旨在描述带正电荷的氨基酸或带有部分电荷氨基的氨基酸与芳香部分之间的阳离子-π和氨基-π相互作用。这些势基于残基类型以特定空间距离分隔或具有给定相对取向的倾向。推导了几种描述残基类型、距离和取向之间不同类型相关性的此类势,并以最大化其信息含量和最小化其冗余性的方式进行组合。为了测试这些势描述阳离子-π和氨基-π系统的能力,我们将它们的能量与使用CHARMM分子力学力场以及在Hartree-Fock水平(HF)和二级Møller-Plesset微扰理论(MP2)下的量子化学计算得到的能量进行比较。后一种计算在气相和丙酮中进行,以模拟蛋白质环境的平均介电常数。当在统计势中考虑一个侧链自由度时,用我们最好的统计势以及气相HF或MP2计算得到的能量显示相关系数高达0.96,当使用完全简化的模型排除所有侧链自由度时,相关系数高达0.94。这些势的表现与使用更详细蛋白质表示的CHARMM分子力学力场一样好,甚至更好。我们的阳离子-π统计势的良好性能表明它们在蛋白质结构和稳定性预测以及蛋白质设计中的实用性。