Suppr超能文献

通过分子动力学模拟研究 N-豆蔻酰化 cAMP 依赖性蛋白激酶 A 的构象平衡。

Conformational equilibrium of N-myristoylated cAMP-dependent protein kinase A by molecular dynamics simulations.

机构信息

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Biochemistry. 2012 Dec 21;51(51):10186-96. doi: 10.1021/bi301279f. Epub 2012 Dec 12.

Abstract

The catalytic subunit of protein kinase A (PKA-C) is subject to several post- or cotranslational modifications that regulate its activity both spatially and temporally. Among those, N-myristoylation increases the kinase affinity for membranes and might also be implicated in substrate recognition and allosteric regulation. Here, we investigated the effects of N-myristoylation on the structure, dynamics, and conformational equilibrium of PKA-C using atomistic molecular dynamics simulations. We found that the myristoyl group inserts into the hydrophobic pocket and leads to a tighter packing of the A-helix against the core of the enzyme. As a result, the conformational dynamics of the A-helix are reduced and its motions are more coupled with the active site. Our simulations suggest that cation-π interactions among W30, R190, and R93 are responsible for coupling these motions. Two major conformations of the myristoylated N-terminus are the most populated: a long loop (LL conformation), similar to Protein Data Bank (PDB) entry 1CMK , and a helix-turn-helix structure (HTH conformation), similar to PDB entry 4DFX , which shows stronger coupling between the conformational dynamics observed at the A-helix and active site. The HTH conformation is stabilized by S10 phosphorylation of the kinase via ionic interactions between the protonated amine of K7 and the phosphate group on S10, further enhancing the dynamic coupling to the active site. These results support a role of N-myristoylation in the allosteric regulation of PKA-C.

摘要

蛋白激酶 A 的催化亚基(PKA-C)受到多种翻译后或共翻译修饰的调节,这些修饰在空间和时间上调节其活性。其中,N-豆蔻酰化增加了激酶对膜的亲和力,并且可能也参与了底物识别和变构调节。在这里,我们使用原子分子动力学模拟研究了 N-豆蔻酰化对 PKA-C 的结构、动力学和构象平衡的影响。我们发现,豆蔻酰基插入疏水区并导致 A 螺旋与酶的核心更紧密地结合。结果,A 螺旋的构象动力学降低,其运动与活性位点更耦合。我们的模拟表明,W30、R190 和 R93 之间的阳离子-π 相互作用负责耦合这些运动。豆蔻酰化 N 端的两种主要构象是最常见的:长环(LL 构象),类似于蛋白质数据库(PDB)条目 1CMK,和螺旋-转角-螺旋结构(HTH 构象),类似于 PDB 条目 4DFX,它显示出 A 螺旋和活性位点之间观察到的构象动力学之间更强的耦合。HTH 构象通过 K7 的质子化胺和 S10 上的磷酸基团之间的离子相互作用被激酶的 S10 磷酸化稳定,进一步增强了与活性位点的动态耦合。这些结果支持 N-豆蔻酰化在 PKA-C 的变构调节中的作用。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验