Suppr超能文献

增强4-氧代-2-壬烯醛与4-羟基-2-壬烯醛毒性的新型电化学方法(亚胺的作用):氧化应激与治疗方式

Novel electrochemical approach to enhanced toxicity of 4-oxo-2-nonenal vs. 4-hydroxy-2-nonenal (role of imine): oxidative stress and therapeutic modalities.

作者信息

Kovacic Peter

机构信息

Department of Chemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-1030, USA.

出版信息

Med Hypotheses. 2006;67(1):151-6. doi: 10.1016/j.mehy.2005.10.034. Epub 2006 Mar 29.

Abstract

Reactive oxygen species (ROS) and oxidative stress (OS) have received increasing attention in connection with illness, disease, and aging. The OS results in widespread attack of body constituents, with unsaturated lipids, leading to hydroperoxides, being a focus of research. Subsequent decomposition yields various functionalized aldehydes, including 4-hydroxy-2-nonenal (HNE). OS linked to HNE is associated with various illnesses. Recently, much attention has been devoted to 4-oxo-2-nonenal (ONE), also a product from lipid hydroperoxide decomposition. ROS and OS are increasingly implicated in the mode of action of drugs and toxins. The preponderance of bioactive substances or their metabolites incorporate electron transfer (ET) functionalities, among which are imines or iminiums. Also, in this category are the less well-known alpha-dicarbonyls. ET moieties undergo redox cycling accompanied by generation of ROS. Electrochemistry, a neglected area, can provide valuable insight. If the reduction potential is more positive than -0.5 V, then ET reactions are a possibility in vivo. Both HNE and ONE participate in Michael addition reactions with protein nucleophiles. The process occurs at a faster rate with ONE due mainly to the high reactivity toward His and Cys. The greater toxicity of ONE vs. HNE may partly reflect this difference. Also, ONE forms Schiff base (imine) at a faster rate than HNE, which also may contribute to the difference in toxicity. Electrochemistry of alpha-dicarbonyls and their imine derivatives can elucidate basic mechanisms. Methylglyoxal possesses a reduction potential of -0.18 V, amenable to ET in vivo. Since ONE is a vinylog of methylglyoxal, redox cycling should be even more facile. Another model is diacetyl whose reduction potential is also favorable. In contrast, crotonaldehyde, a model for the HNE vinylog, is characterized by a quite negative reduction potential, unsuitable for ET; acrolein is included. Imines of alpha-dicarbonyls serve as models for Schiff bases from ONE. The diimines in acid have reduction potentials of -0.45 to -0.49 V. Diacetyl monoxime, an oximino analog of the vinylogous ONE mono Schiff base, possesses a similar value. The ONE vinylogs should exhibit even better electrochemical characteristics. Thus, these neglected electrochemical properties can help rationalize the greater toxicity of ONE vs. HNE. Toxicity of the aldehydes may be countered by various approaches: formation of non-toxic imines, carboxylic acids, and Michael adducts. Genetic methods and AO therapy are treated.

摘要

活性氧(ROS)和氧化应激(OS)在疾病、衰老方面受到越来越多的关注。氧化应激会对身体成分造成广泛攻击,不饱和脂质成为研究重点,其会生成氢过氧化物。随后的分解会产生各种官能化醛类,包括4-羟基-2-壬烯醛(HNE)。与HNE相关的氧化应激与多种疾病有关。最近,4-氧代-2-壬烯醛(ONE)也受到了很多关注,它也是脂质氢过氧化物分解的产物。ROS和OS越来越多地与药物和毒素的作用方式相关。生物活性物质或其代谢产物大多具有电子转移(ET)功能,其中包括亚胺或亚胺鎓。此外,不太知名的α-二羰基化合物也属于这一类。ET部分会经历氧化还原循环并伴随ROS的产生。电化学这一被忽视的领域能提供有价值的见解。如果还原电位比-0.5 V更正,那么体内就有可能发生ET反应。HNE和ONE都会与蛋白质亲核试剂发生迈克尔加成反应。ONE的反应速率更快,主要是因为它对组氨酸和半胱氨酸的反应性高。ONE比HNE毒性更大可能部分反映了这种差异。此外,ONE形成席夫碱(亚胺)的速度比HNE快,这也可能导致毒性差异。α-二羰基化合物及其亚胺衍生物的电化学性质可以阐明基本机制。甲基乙二醛的还原电位为-0.18 V,适合体内的ET反应。由于ONE是甲基乙二醛的插烯物,氧化还原循环应该更容易。另一个例子是丁二酮,其还原电位也很有利。相比之下,巴豆醛作为HNE的插烯物模型,其还原电位相当负,不适合ET反应;丙烯醛也属于此类。α-二羰基化合物的亚胺可作为ONE席夫碱的模型。酸性条件下的二亚胺还原电位为-0.45至-0.49 V。丁二酮一肟作为ONE单席夫碱的肟基类似物,具有相似的值。ONE的插烯物应该表现出更好的电化学特性。因此,这些被忽视的电化学性质有助于解释ONE比HNE毒性更大的原因。醛类的毒性可以通过多种方法来对抗:形成无毒的亚胺、羧酸和迈克尔加合物。文中还讨论了基因方法和抗氧化剂治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验