Kanno Jun, Aisaki Ken-ichi, Igarashi Katsuhide, Nakatsu Noriyuki, Ono Atsushi, Kodama Yukio, Nagao Taku
Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Tokyo 158-8501, Japan.
BMC Genomics. 2006 Mar 29;7:64. doi: 10.1186/1471-2164-7-64.
Transcriptome data from quantitative PCR (Q-PCR) and DNA microarrays are typically obtained from a fixed amount of RNA collected per sample. Therefore, variations in tissue cellularity and RNA yield across samples in an experimental series compromise accurate determination of the absolute level of each mRNA species per cell in any sample. Since mRNAs are copied from genomic DNA, the simplest way to express mRNA level would be as copy number per template DNA, or more practically, as copy number per cell.
Here we report a method (designated the "Percellome" method) for normalizing the expression of mRNA values in biological samples. It provides a "per cell" readout in mRNA copy number and is applicable to both quantitative PCR (Q-PCR) and DNA microarray studies. The genomic DNA content of each sample homogenate was measured from a small aliquot to derive the number of cells in the sample. A cocktail of five external spike RNAs admixed in a dose-graded manner (dose-graded spike cocktail; GSC) was prepared and added to each homogenate in proportion to its DNA content. In this way, the spike mRNAs represented absolute copy numbers per cell in the sample. The signals from the five spike mRNAs were used as a dose-response standard curve for each sample, enabling us to convert all the signals measured to copy numbers per cell in an expression profile-independent manner. A series of samples was measured by Q-PCR and Affymetrix GeneChip microarrays using this Percellome method, and the results showed up to 90 % concordance.
Percellome data can be compared directly among samples and among different studies, and between different platforms, without further normalization. Therefore, "percellome" normalization can serve as a standard method for exchanging and comparing data across different platforms and among different laboratories.
定量聚合酶链反应(Q-PCR)和DNA微阵列的转录组数据通常从每个样本收集的固定量RNA中获得。因此,在一个实验系列中,样本间组织细胞密度和RNA产量的变化会影响准确测定任何样本中每个mRNA种类的绝对细胞水平。由于mRNA是从基因组DNA复制而来,表达mRNA水平的最简单方法是以每个模板DNA的拷贝数表示,或者更实际地,以每个细胞的拷贝数表示。
在这里,我们报告了一种用于标准化生物样本中mRNA值表达的方法(称为“单细胞转录组”方法)。它提供了mRNA拷贝数的“每细胞”读数,适用于定量聚合酶链反应(Q-PCR)和DNA微阵列研究。从每个样本匀浆的一小份中测量基因组DNA含量,以得出样本中的细胞数量。制备了一种以剂量梯度方式混合的五种外部加标RNA的混合物(剂量梯度加标混合物;GSC),并根据其DNA含量按比例添加到每个匀浆中。通过这种方式,加标mRNA代表了样本中每个细胞的绝对拷贝数。来自五种加标mRNA的信号用作每个样本的剂量反应标准曲线,使我们能够以与表达谱无关的方式将所有测量信号转换为每个细胞的拷贝数。使用这种单细胞转录组方法通过Q-PCR和Affymetrix基因芯片微阵列对一系列样本进行测量,结果显示一致性高达90%。
单细胞转录组数据可以在样本之间、不同研究之间以及不同平台之间直接比较,无需进一步标准化。因此,“单细胞转录组”标准化可以作为跨不同平台和不同实验室交换和比较数据的标准方法。