Suppr超能文献

一种用于稳健解析时间序列基因表达的内在聚类结构的几何聚类工具(AGCT)。

A Geometric Clustering Tool (AGCT) to robustly unravel the inner cluster structures of time-series gene expressions.

机构信息

NICTA/Data61 & the Australian National University, Alexandria, Australia.

Sony Computer Science Laboratories Inc., Tokyo, Japan.

出版信息

PLoS One. 2020 Jul 6;15(7):e0233755. doi: 10.1371/journal.pone.0233755. eCollection 2020.

Abstract

Systems biology aims at holistically understanding the complexity of biological systems. In particular, nowadays with the broad availability of gene expression measurements, systems biology challenges the deciphering of the genetic cell machinery from them. In order to help researchers, reverse engineer the genetic cell machinery from these noisy datasets, interactive exploratory clustering methods, pipelines and gene clustering tools have to be specifically developed. Prior methods/tools for time series data, however, do not have the following four major ingredients in analytic and methodological view point: (i) principled time-series feature extraction methods, (ii) variety of manifold learning methods for capturing high-level view of the dataset, (iii) high-end automatic structure extraction, and (iv) friendliness to the biological user community. With a view to meet the requirements, we present AGCT (A Geometric Clustering Tool), a software package used to unravel the complex architecture of large-scale, non-necessarily synchronized time-series gene expression data. AGCT capture signals on exhaustive wavelet expansions of the data, which are then embedded on a low-dimensional non-linear map using manifold learning algorithms, where geometric proximity captures potential interactions. Post-processing techniques, including hard and soft information geometric clustering algorithms, facilitate the summarizing of the complete map as a smaller number of principal factors which can then be formally identified using embedded statistical inference techniques. Three-dimension interactive visualization and scenario recording over the processing helps to reproduce data analysis results without additional time. Analysis of the whole-cell Yeast Metabolic Cycle (YMC) moreover, Yeast Cell Cycle (YCC) datasets demonstrate AGCT's ability to accurately dissect all stages of metabolism and the cell cycle progression, independently of the time course and the number of patterns related to the signal. Analysis of Pentachlorophenol iduced dataset demonstrat how AGCT dissects data to identify two networks: Interferon signaling and NRF2-signaling networks.

摘要

系统生物学旨在全面理解生物系统的复杂性。特别是,如今随着基因表达测量的广泛应用,系统生物学挑战从这些数据中破译遗传细胞机制。为了帮助研究人员从这些嘈杂的数据集反向工程遗传细胞机制,必须专门开发交互式探索性聚类方法、管道和基因聚类工具。然而,以前用于时间序列数据的方法/工具在分析和方法观点上没有以下四个主要成分:(i)有原则的时间序列特征提取方法,(ii)用于捕获数据集高层视图的多种流形学习方法,(iii)高端自动结构提取,以及(iv)对生物用户社区的友好性。有鉴于此,我们提出了 AGCT(一种几何聚类工具),这是一个软件包,用于揭示大规模、非同步时间序列基因表达数据的复杂结构。AGCT 捕获数据的详尽小波展开上的信号,然后使用流形学习算法将其嵌入到低维非线性映射中,其中几何接近度捕获潜在的相互作用。包括硬信息和软信息几何聚类算法在内的后处理技术,有助于将完整的图谱总结为较少的主要因子,然后使用嵌入的统计推断技术正式识别这些主要因子。在处理过程中进行三维交互式可视化和场景记录,有助于在无需额外时间的情况下重现数据分析结果。对全细胞酵母代谢循环(YMC)的分析,以及酵母细胞周期(YCC)数据集,证明了 AGCT 能够准确地剖析代谢和细胞周期进展的所有阶段,而与信号的时间过程和数量无关。对五氯苯酚诱导数据集的分析演示了 AGCT 如何剖析数据以识别两个网络:干扰素信号和 NRF2 信号网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09f0/7337352/c77010986c55/pone.0233755.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验