Leblois Arthur, Boraud Thomas, Meissner Wassilios, Bergman Hagai, Hansel David
Laboratoire de Neurophysique et Physiologie du Système Moteur, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8119, Université René Descartes, 75270 Paris, France.
J Neurosci. 2006 Mar 29;26(13):3567-83. doi: 10.1523/JNEUROSCI.5050-05.2006.
Experiments performed in normal animals suggest that the basal ganglia (BG) are crucial in motor program selection. BG are also involved in movement disorders. In particular, BG neuronal activity in parkinsonian animals and patients is more oscillatory and more synchronous than in normal individuals. We propose a new model for the function and dysfunction of the motor part of BG. We hypothesize that the striatum, the subthalamic nucleus, the internal pallidum (GPi), the thalamus, and the cortex are involved in closed feedback loops. The direct (cortex-striatum-GPi-thalamus-cortex) and the hyperdirect loops (cortex-subthalamic nucleus-GPi-thalamus-cortex), which have different polarities, play a key role in the model. We show that the competition between these two loops provides the BG-cortex system with the ability to perform motor program selection. Under the assumption that dopamine potentiates corticostriatal synaptic transmission, we demonstrate that, in our model, moderate dopamine depletion leads to a complete loss of action selection ability. High depletion can lead to synchronous oscillations. These modifications of the network dynamical state stem from an imbalance between the feedback in the direct and hyperdirect loops when dopamine is depleted. Our model predicts that the loss of selection ability occurs before the appearance of oscillations, suggesting that Parkinson's disease motor impairments are not directly related to abnormal oscillatory activity. Another major prediction of our model is that synchronous oscillations driven by the hyperdirect loop appear in BG after inactivation of the striatum.
在正常动物身上进行的实验表明,基底神经节(BG)在运动程序选择中至关重要。BG也与运动障碍有关。特别是,帕金森病动物和患者的BG神经元活动比正常个体更具振荡性且更同步。我们提出了一个关于BG运动部分功能和功能障碍的新模型。我们假设纹状体、丘脑底核、内侧苍白球(GPi)、丘脑和皮质参与了封闭的反馈回路。具有不同极性的直接回路(皮质-纹状体-GPi-丘脑-皮质)和超直接回路(皮质-丘脑底核-GPi-丘脑-皮质)在该模型中起关键作用。我们表明,这两个回路之间的竞争为BG-皮质系统提供了执行运动程序选择的能力。在多巴胺增强皮质纹状体突触传递的假设下,我们证明,在我们的模型中,适度的多巴胺耗竭会导致动作选择能力完全丧失。高度耗竭会导致同步振荡。当多巴胺耗竭时,网络动态状态的这些改变源于直接回路和超直接回路中反馈的不平衡。我们的模型预测,选择能力的丧失发生在振荡出现之前,这表明帕金森病的运动障碍与异常振荡活动没有直接关系。我们模型的另一个主要预测是,在纹状体失活后,超直接回路驱动的同步振荡会出现在BG中。